Differential Geometry I
Let $U \subset \mathbb{R}^{n}$ be an open subset and $f \in C^{1}(-V)$. It is known from analysis that $x_{0} \in U$ is a point of extremum for f if

$$
\frac{\partial f}{\partial x_{i}}\left(x_{0}\right)=0 \quad \forall i=1, \ldots, n \text {. }
$$

Notice that this is a necessary condition, which is not sufficient in general.

A wore general type of problems does not fit into this scheme. For example, consider the following.
Problem Among all rectangular parallelepipeds, whose diagonal has a fixed length 1, find the one with maximal volume.

Thus, we want to find a point of maximum (2) of the function $f(x, y, z)=x y z$ on the set $V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x>0, y>0, z>0\right.$ and $\left.x^{2}+y^{2}+z^{2}=1\right\} \subset S^{2}$

However, V is not an open subset of \mathbb{R}^{3} so that the receipy known from the analysis course is not applicable.

This problem relatively easy to solve, however.
Indeed, since $z>0 \Rightarrow z=\sqrt{1-x^{2}-y^{2}}$
so that

$$
f\left(x, y, \sqrt{1-x^{2}-y^{2}}\right)=\underbrace{x y \sqrt{1-x^{2}-y^{2}}}_{F(x, y)}, \quad x^{2}+y^{2}<1
$$

Hence, we want to find points of maximum of the function F on the set $\left\{(x, y) \mid x^{2}+y^{2}<1, x>0, y>0\right\}$, which is an open subset of \mathbb{R}.
We compute

$$
\begin{align*}
& \frac{\partial F}{\partial x}=y \sqrt{1-x^{2}-y^{2}}-x y \frac{x}{\sqrt{1-x^{2}-y^{2}}}=0 \tag{*}\\
& \frac{\partial F}{\partial y}=x \sqrt{1-x^{2}-y^{2}}-x y \frac{y}{\sqrt{1-x^{2}-y^{2}}}=0
\end{align*}
$$

Since $x \neq 0$ and $y \neq 0$, we have

$$
\begin{aligned}
& (*) \Leftrightarrow \begin{array}{r}
1-x^{2}-y^{2}=x^{2} \\
1-x^{2}-y^{2}=y^{2}
\end{array} \Rightarrow x^{2}=y^{2} \Rightarrow x=y \\
& \Rightarrow 3 x^{2}=1 \Rightarrow x=y=\frac{1}{\sqrt{3}} \\
& \Rightarrow z=\frac{1}{\sqrt{3}}
\end{aligned}
$$

Hence, among all rectangular parallelepipeds with the given length of the diagonal the cube maximazes the volume.

Exercise Show that $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ is a point of maximum indeed.

Consider a more general problem of constrained maximum / minimum. Given $f, \varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ find a point of maximum/minimum of f on the set

$$
S:=\left\{x \in \mathbb{R}^{n} \mid \varphi(x)=0\right\} .
$$

Prop 1 Assume that for $p \in S$ we have

$$
\begin{equation*}
\frac{\partial \varphi}{\partial x_{n}}(p) \neq 0 \tag{*}
\end{equation*}
$$

Then \exists a neighbourhood V of p in $S_{\text {, }}$ an open subset $V \subset \mathbb{R}^{n-1}$, and a smooth function $\psi: V \rightarrow \mathbb{R}$ such that

$$
\begin{gathered}
x=(y, z) \in S \cap U \Leftrightarrow z=\psi(y), y \in V . . ~ \\
\substack{g \\
0}
\end{gathered}
$$ $\mathbb{R}^{d_{i n}}{ }_{R}$

This is a celebrated implicit function theorem, whose proof was given in the analysis conses.
Thur 1 Let $p \in S$ be a point of (local) maximum of f on S. If (*) holds, then $\exists \lambda \in \mathbb{R}$ such that

$$
\frac{\partial f}{\partial x_{j}}(p)=\lambda \frac{\partial \varphi}{\partial x_{j}}(p) \Leftrightarrow \nabla f(p)=\lambda \nabla \varphi(p)
$$

holds for each $j=1, \ldots, n$.

Proof Let $p=\left(y_{0}, z_{0}\right)$.
p is a (lon.) maximum for $\left.f\right|_{s} \Longleftrightarrow$ y_{0} is a loci. maximum for a function

$$
\begin{aligned}
& F: V \rightarrow \mathbb{R}, F(y):=f(y, \psi(y)) \\
& \Rightarrow \frac{\partial F}{\partial y_{j}}\left(y_{0}\right)=\frac{\partial f}{\partial y_{j}}(p)+\frac{\partial f}{\partial x_{n}}(p) \cdot \frac{\partial \psi}{\partial y_{j}}\left(y_{0}\right)=0 \\
& \varphi(y, \psi(y))=0 \Rightarrow \frac{\partial \varphi}{\partial y_{j}}+\frac{\partial \varphi}{\partial x_{n}} \frac{\partial \psi}{\partial y_{j}} \equiv 0 \\
& \Rightarrow \frac{\partial \psi}{\partial y_{j}}\left(y_{0}\right)=-\frac{\partial \varphi}{\partial y_{j}}(p) / \frac{\partial \varphi}{\partial x_{u}}(p) \\
& \Rightarrow \frac{\partial f}{\partial y_{j}}(p)=\left(\frac{\partial f}{\partial x_{w}}(p) / \frac{\partial \varphi}{\partial x_{n}}(p)\right) \cdot \frac{\partial \varphi}{\partial y_{j}}(p) \\
& { }_{\lambda}^{\prime \prime} \text { does not depend on } j
\end{aligned}
$$

For $j=u$ we have

$$
\frac{\partial f}{\partial x_{n}}(p)=\left(\frac{\partial f}{\partial x_{n}}(p) / \frac{\partial \varphi}{\partial x_{n}}(p)\right) \cdot \frac{\partial \varphi}{\partial x_{n}}(p) \quad \checkmark
$$

Let us come back to the example about maximal volume of parallelepipeds with a fixed length of the diagonal. Thus, if (x, y, z) is a point of maximum of f on

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \quad \mid x^{2}+y^{2}+z^{2}=1, x, y, z>0\right\}
$$

then there exists $\lambda \in \mathbb{R}$ such that

$$
\begin{aligned}
& y z=2 \lambda x \\
& x z=2 \lambda y \\
& x y=2 \lambda z
\end{aligned} \quad \Rightarrow \quad(x y z)^{2}=8 \lambda^{3} x y z
$$

$$
\Rightarrow \quad x y z=8 \lambda^{3}
$$

$$
\Rightarrow \quad x=2 \lambda
$$

using $2 \lambda x^{2}$
the first equ
A similar argument yields also $y=2 \lambda$ and $z=2 \lambda$

$$
\begin{aligned}
& \Rightarrow \quad 4 \lambda^{2}+4 \lambda^{2}+4 \lambda^{2}=1 \Rightarrow \lambda=\frac{1}{2 \sqrt{3}} \\
& \Rightarrow \quad x=y=z=\frac{1}{\sqrt{3}}
\end{aligned}
$$

Coming back to Prop. 1 on P.4, it is dear that it is only important that one of the partial derivatives of φ does not vanish. This leads to the following definition.

Def (Surface) A non-empty set $S \subset \mathbb{R}^{3}$ is called a (smooth) surface, if for any $p \in S \quad \exists$ an open set $V \subset \mathbb{R}^{2}$ and a smooth map $\psi: V \rightarrow S$ such that the following holds:
(i) $\psi(V)=: V$ is a neighbourhood of P in S.
(ii) $\psi: V \rightarrow V$ is a homeomorphism.
(iii) $D_{g} \psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is infective $\forall q \in V$.

Ex Assume $\varphi \in \mathbb{C}^{\infty}\left(\mathbb{R}^{3}\right)$ satisfies

$$
\frac{\partial \varphi}{\partial z}(p) \neq 0 \quad \forall p \in S=\{\varphi(x, y, z)=0\} .
$$

Let ψ be as in Prop 1 on P. 4. Define $\Psi(x, y):=(x, y, \psi(x, y))$. If U and V are also as in Prop. 1 on P4, then $\Psi: V \rightarrow S \cap U$ is a homeomorphism, since $\pi: S \cap U \rightarrow V, \pi(x, y, z)=(x, y)$
is a continuous inverse. Furthermore,
$D \underline{\Psi}=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ \frac{\partial \psi}{\partial x} & \frac{\partial \psi}{\partial y}\end{array}\right)$ is clearly infective
Hence, S is a surface.
In particular,

- the sphere $S^{2}=\left\{x^{2}+y^{2}+z^{2}=1\right\}$
- the cylinder $C=\left\{(x, y, z) \mid x^{2}+y^{2}=1\right\}$
the hyperboloid $H=\left\{x^{2}+y^{2}-z^{2}=1\right\}$ are surfaces

C

H

Ex (Torus) Let C be the circle of radius r in the $y z$-plane centered at the point $(0, a, 0)$, where $a>r$

Torus
More formally,

$$
T:=\left\{\left(\sqrt{x^{2}+y^{2}}-a\right)^{2}+z^{2}=r^{2}\right\}
$$

Exercise check that T is a surface indeed.

A non-example A double cone

$$
C_{0}:=\left\{x^{2}+y^{2}-z^{2}=0\right\}
$$

is not a surface.
Indeed, assume C_{0} is a surface. Then the tip of the cone P must have a neighbourkood Uhomeonorphic to an open disc in \mathbb{R}^{2}.

Let $f: V \rightarrow D$ be a homeomorphism.
Then $f: U \backslash h p\{\rightarrow D \backslash f(p)$ is also a homes. disconnected $\quad \uparrow \quad$ connected
Hence, P does not have a ubhd homeomerphic to a disc (or any open subset of \mathbb{R}^{2}).
Exercise Show that a straight line is not a surface.

Rem 1) The map ψ in the definition of the surface is called a parametrization.
2) Condition (iii) is equivalent to

$$
\frac{\partial \psi}{\partial u} \quad \& \quad \frac{\partial \psi}{\partial v}
$$

are linearly independent at each $\rho t(U, v) \in V$.

Prop Let S be a surface. For any $p \in S \quad \exists$ a ubhd $W \subset \mathbb{R}^{3}$ and $\varphi \in C^{\infty}(W)$ such that

$$
S \cap W=\{x \in W \mid \varphi(x)=0\}
$$

and $\nabla \varphi(x) \neq 0 \quad \forall x \in S \cap W$.
Proof Choose a parametrization
Let $\psi\left(u_{0}, v_{0}\right)=\rho$ and choose
$\psi: \underset{n}{V} \rightarrow V_{n}$. a vector $n \in \mathbb{R}^{3}$ such that

$$
\begin{equation*}
\frac{\partial \psi}{\partial u}\left(u_{0}, v_{0}\right), \frac{\partial \psi}{\partial v}\left(u_{0}, v_{0}\right), \quad u \tag{*}
\end{equation*}
$$

are linearly independent. Consider the map

$$
\underline{\Psi}: V \times \mathbb{R} \rightarrow \mathbb{R}^{3}, \quad \underline{(u, v, w)=\psi(u, v)+w \cdot n}
$$

By (*), $\operatorname{det} D \Psi\left(u_{0}, v_{0}, 0\right) \neq 0$. By the inverse map theorem, \exists open neighbourhood $W \subset \mathbb{R}^{3}$ of P and a smooth map
$\Phi: W \rightarrow V \times \mathbb{R} \subset \mathbb{R}^{3}$ such that

$$
\Psi \cdot \Phi(x)=x \quad \forall x \in W
$$

If $\Phi=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$, then

$$
\Psi \circ \Phi(x)=\psi\left(\varphi_{1}(x), \varphi_{2}(x)\right)+\varphi_{3}(x) \cdot u=x
$$

Observe that
$x \in S \cap W \Leftrightarrow \exists(u, v) \in V$ s.t. $\psi(u, v)=x$

$$
\begin{aligned}
& x=\Psi(u, v)=\Psi(u, v, 0) \\
& " \prime \\
& \Psi\left(\varphi_{1}(x), \varphi_{2}(x), \varphi_{3}(x)\right)
\end{aligned}
$$

Since Ψ is injective (on an open ubhd of $\left(u_{0}, v_{0}, D\right)$), we have

$$
x \in S \cap W \quad \Longleftrightarrow \quad \varphi_{z}(x)=0 .
$$

Furthermore, $\operatorname{det} D \Phi(x) \neq 0 \quad \forall x \in W$ $\Leftrightarrow \nabla \varphi_{1}(x), \nabla \varphi_{2}(x), \nabla \varphi_{3}(x)$ are linearly independent $\forall x \in W$

$$
\Rightarrow \nabla \varphi_{3}(x) \neq 0 \quad \forall x \in W .
$$

Corollary Any surface is locally the graph of a smooth function.

The proof follows from Prop 1 on P. 4.
A non-example A union of two intersecting planes is not a surface

Indeed, assume that

$$
S:=\{z=0\} \cup\{x=0\}
$$

is a surface.

Then \exists a smooth function φ defined in a ubhd W of the origin such that

$$
\begin{aligned}
& \varphi(x, y, z)=0 \text { on } S \\
\Rightarrow & \nabla \varphi(0)=0 .
\end{aligned}
$$

Thus, S is not a surface.
Remark Neither parametrizations, nor local functions as in the Proposition on P. 11 are unique. Our goal is to understand a relation between different parametrizations.

Thus, let

$$
\begin{aligned}
& \psi_{1}: V_{1} \rightarrow U_{1} \subset S \\
& \psi_{2}: V_{2} \rightarrow v_{2} \subset S
\end{aligned}
$$

be two parametrization s.t. $V_{1} \cap V_{2} \neq 0$

Since $\psi_{1} \& \psi_{2}$ are homeomorphisms, we have a well-defined continuous map

$$
\psi_{21}:=\Psi_{2}^{\top} \cdot \psi_{1}: V_{12} \rightarrow V_{21}
$$

which is called "transition map" or "change of coordinates map".
Notice that Ψ_{21} is a map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined on an open subset.

Ex Consider the sphere S^{2}, which can be covered by the images of two parametrization as follows.

The inverse of the steregraphic projection from the worth pole N is given by

$$
(u, v) \longmapsto \Psi_{N}(u, v)=\frac{1}{1+u^{2}+v^{2}}\left(2 u, 2 v,-1+u^{2}+v^{2}\right)
$$

This is a homeomorphism viewed as a $\operatorname{map} \mathbb{R}^{2} \rightarrow S^{2} \backslash\{N\}$ and is clearly smooth.
Exercise Show that $D \Psi_{N}$ is injective at each point.
Thus Ψ_{N} is a parametrization (at each point $\left.p \in S^{2} \backslash\{N\}\right)$.

Of course, we have also the inverse ψ_{s} of the stereographic projection from the south pole S. The images of these two parametrization cover together the whole sphere s^{2}.
Rem A computation shows that the change of
 is given by

$$
\psi_{S N}(u, v)=\frac{1}{u^{2}+v^{2}}(u, v)
$$

Exercise show that the sphere can not be covered by the image of a single parameter.
Thur The change of coordinates map is smooth. Proof Since smoothness is a local property, it suffices to show that $\forall\left(u_{0}, v_{0}\right) \in V_{12}$ \exists a ubhd $V_{0} \subset V_{12}$ such that $\left.\Psi_{21}\right|_{V_{0}}$ is smooth.
Thees, st $p_{0}:=\psi_{1}\left(u_{0}, v_{0}\right)$. For this p_{0} and Ψ_{2} construct a smooth map $\Phi_{2}: W \longrightarrow V_{2} \times \mathbb{R}$ as in the proof of the Proposition on P. 11.

Recall that

$$
\left.\Phi_{2} \int_{\delta \cap W}: S \cap W \rightarrow V_{2} \times \alpha_{0}\right\}=V_{2}
$$

equals Ψ_{2}^{-1}.
The map $\Phi_{2} \cdot \Psi_{1}: \quad \Psi_{1}^{-1}(\delta \cap \omega) \rightarrow V_{2}$ is clearly smooth as a composition of smooth maps. Set $\nabla_{0}:=V_{12} \cap \psi_{1}^{-1}(S \cap W)$.
Since the image of ψ_{1} lies in S, we have

$$
\left.\Phi_{2} \circ \psi_{1}\right|_{V_{0}}=\left.\psi_{2}^{-1} \circ \psi_{1}\right|_{-V_{0}}=\left.\psi_{21}\right|_{V_{0}}
$$

is smooth.
Def Let S be a surface.
A function $f: S \rightarrow \mathbb{R}$ is said to be smooth, if for any parametrization $\psi: V \rightarrow U$ the composition

$$
F:=f_{0} \psi: V \rightarrow \mathbb{R}
$$

is smooth. The function $F:=f . \psi$ is called a local (coordinate) representation of f.

Rem The theorem on P. 15 implies that if $f_{0} \Psi_{1}$ is smooth, then $f_{0} \psi_{2}$ is also smooth on $V_{21}=\psi_{2}^{-1}\left(V_{1} \cap V_{2}\right)$.
Indeed,

$$
f \circ \psi_{2}=f \cdot \psi_{1} \circ\left(\psi_{1}^{-1} \circ \psi_{2}\right)=\left(f \circ \psi_{1}\right) \cdot \psi_{12}
$$

Hence, if $\left(V_{i}, \Psi_{i}\right)$ is a collection of parametrization such that $\psi_{i}\left(V_{i}\right)$ covers all of S, it suffices to check that $f \circ \psi_{i}$ is smooth $\forall i$.
Ex Let $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be an arbitrary smooth function. Define $f: S \rightarrow \mathbb{R}$ as the restriction of h. Then f is smooth, since for any parametrization ψ we have

$$
f_{0} \psi=\frac{h_{0} \psi}{\text { smooth. }}
$$

For example, for any fixed $a \in \mathbb{R}^{3}$ the height function

$$
f_{a}(x)=\langle a, x\rangle \quad x \in S
$$

is a smooth function on S.

In particular, set $S=S^{2}$ and $h(x, y, z)=z$. Then the coordinate representation of $f=h / s^{2}$ with respect to ψ_{N} is

$$
F(u, v)=f_{0} \Psi_{N}(u, v)=\frac{-1+u^{2}+v^{2}}{1+u^{2}+v^{2}} .
$$

Ex Let $\psi: V \rightarrow U$ be a parametrization of a surface S. Since ψ is a homermorphism, we have the inverse map

$$
\varphi:=\Psi^{-1}: V \rightarrow V
$$

Since V itself is a surface (with a single parametrization Ψ), it makes sense to ask if φ viewed as a map $V \rightarrow \mathbb{R}^{2}$ is smooth, which means by definition that both components of φ are smooth functions. This is the case indeed, since the local representation of φ is nothing else but

$$
\varphi \cdot \psi=i d
$$

which is certainly smooth.
Any pair (τ, φ) is called a chart on S.

Prop 1 Let S be a surface. Then the set $C^{\infty}(S)$ of all smooth functions on S is a vector space, that is

$$
\begin{aligned}
& f, g \in C^{\infty}(S) \\
& \lambda, \mu \in \mathbb{R}
\end{aligned} \Longrightarrow \lambda f+\mu g \in C^{\infty}(S) \text {. }
$$

In fact, we also have

$$
f, g \in C^{\infty}(s) \Rightarrow f \cdot g \in C^{\infty}(s)
$$

Proof We prove the last statement only.
Let $\psi: V \rightarrow V$ be a parametrization.
Then

$$
(f \cdot g) \cdot \psi=\underbrace{\begin{array}{c}
(f \cdot \psi) \cdot(g \circ \psi) \\
C_{n}^{\infty}(v) \quad C^{\infty}(v) \\
C^{\infty}(v)
\end{array}}_{C^{\infty}(v) .}
$$

Let $W \subset \mathbb{R}^{n}$ be an open set.
Def A cont. map $f: W \rightarrow S$, where S is a surface, is called smooth, if for any parametrization $\psi: V \rightarrow U \subset S$, the map

$$
\varphi \circ f=\psi^{-1} \circ f: \quad f^{-1}(v) \rightarrow \underset{\mathbb{R}^{2}}{V}
$$

is smooth.

Prop $f: W \rightarrow S$ is smooth if and only if f is smooth as a map $W \rightarrow \mathbb{R}^{3}$. More formally, this means the following: If $2: S \rightarrow \mathbb{R}^{3}$ denotes the natural inclusion map, then

$$
f \in C^{\infty}(w ; S) \Leftrightarrow \quad 2 \cdot f \in C^{\infty}\left(w ; \mathbb{R}^{3}\right)
$$

Proof Pick a parametrization ψ of S and construct a smooth map $\Phi: X \longrightarrow \mathbb{R}^{3}$ just as in the proof of the proposition on P. Il, where $X \subset \mathbb{R}^{3}$ is an open set.
Assume $f: W \rightarrow \mathbb{R}^{3}$ is smooth. Then Inf is also smooth as the composition of smooth maps. However, since f takes values in S and $\left.\Phi\right|_{s}=\varphi=\psi^{-1}$, we obtain that $\varphi_{0} f=\Phi \circ f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is smooth.

Conversely, assume that $f: W \rightarrow S$ is smooth. Then

$$
\left.f\right|_{f^{-1}(v)}=\left.(\psi \cdot \varphi) \circ f\right|_{f^{-1}(v)}=\left.\psi \cdot(\varphi \circ f)\right|_{f^{-1}(v)}
$$

is again smooth as the composition of smooth maps.

The following class of maps will be particularly important in the sequel.
Deft Let $I \subset \mathbb{R}$ be an (open) interval. A smooth map $\gamma: I \rightarrow S$ is called a smooth curve on S.

If $0 \in I$, we say that γ is a smooth ceerve through $p:=\gamma(0) \in S$.

Ex Let $p \in S^{2}$ and $v \in \mathbb{R}^{3}$ s.t. $\langle p, v\rangle=0$. and $\|v\|=1$.
Define $\gamma_{v}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ by

$$
\gamma_{v}(t)=(\cos t) \cdot p+(\sin t) \cdot v
$$

Since

$$
=\cos ^{2} t \cdot\|\rho\|^{2}+0+\sin ^{2} t \cdot\|v\|^{2}
$$

$$
=\cos ^{2} t+\sin ^{2} t=1
$$

we obtain that $\gamma_{v}: \mathbb{R} \rightarrow S^{2}$ is a smooth curve through p. of course, the image of γ_{v} is a great circle on S^{2}.

Even more generally, we can define smooth maps between surfaces as follows.
Def Let S_{1} and S_{2} be two surfaces. A contin. map: $S_{1} \rightarrow S_{2}$ is said to be smooth, if for any parametrization $\psi: V \xrightarrow{\prime} U \subset S_{1}$ and $x: W \rightarrow X \subset S_{2}$ the map

$$
\chi^{-1} \circ f \circ \psi: \psi^{-1}\left(f^{-1}(x)\right) \longrightarrow W
$$

is smooth.

The map $X^{-1} \circ f \circ \psi$ is called the coordinate (or local) representation of f.
Rem Since parametrizations and charts contain the same ammount of information, we can also define smoothness of a $\operatorname{map} f: S_{1} \rightarrow S_{2}$ interns of charts as follows: f is smooth if and only if for any chart (U, φ) on S_{1} and any chart (X, ξ) on S_{2} the map

$$
\xi \circ f \circ \varphi^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

is smooth (on an open subset where defined) The map $\xi_{0} f_{0} \varphi^{-1}$ is also called a coordinate representation of f (with respect to charts (v, φ) and $(x, \xi))$.

Rem Just like in the case of functions, it suffices to find two collections $\left\{\psi_{i}: V_{i} \rightarrow V_{i}\right\}$ and $\left\{\gamma_{j}: W_{j} \rightarrow X_{j}\right\}$ of parametrization such that

$$
U_{i} U_{i}=S_{1} \text { and } \bigcup_{j} X_{j}=S_{2}
$$

and check that all coordinate representations $\mathcal{Y}_{j}^{-1} \circ f_{0} \Psi_{i}$ are smooth.

Consider the antipodal map
$a: S^{2} \rightarrow S^{2}, \quad a(x)=-x$.
For any $(u, v) \in \mathbb{R}^{2}$ we have

$$
a \cdot \psi_{N}(u, v)=-\frac{1}{1+u^{2}+v^{2}}\left(2 u, 2 v,-1+u^{2}+v^{2}\right)
$$

Since $\quad \psi_{s}^{-1}: S^{2} \backslash\{s\} \rightarrow \mathbb{R}^{2}$ is given by

$$
(x, y, z) \longmapsto\left(\frac{x}{1+z}, \frac{y}{1+z}\right)
$$

we obtain

$$
\begin{aligned}
& \Psi_{S}^{-1} \circ a \circ \Psi_{N}(u, v)=\frac{1}{1+\frac{1-u^{2}-v^{2}}{1+u^{2}+v^{2}}}\left(-\frac{2 u}{1+u^{2}+v^{2}},-\frac{2 v}{1+u^{2}+v^{2}}\right) \\
&=-\frac{1+u^{2}+v^{2}}{2}\left(\frac{2 u}{1+u^{2}+v^{2}}, \frac{-2 v}{1+u^{2}+v^{2}}\right) \\
&=-(u, v)
\end{aligned}
$$

It follows in a similar manner, that

$$
\psi_{S}^{-1} \circ a \circ \psi_{S}, \quad \psi_{N}^{-1} \circ a \circ \psi_{N} \text {, and } \psi_{N}^{-1} \circ a \circ \psi_{S}
$$

are also smooth. Hence, a is smooth.
Prop Let $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a smooth map such that $h\left(S_{1}\right) \subset S_{2}$, where S_{1} and S_{2} are surfaces. Then $\left.h\right|_{S_{1}}: S_{1} \rightarrow S_{2}$ is also smooth.

The proof of this proposition is similar (24) to the proof of Prop 2 on P. 18 and is left as an exercise to the reader.

To construct a more interesting example, pick a polynomial

$$
p(z):=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

with complex coefficients. Identifying \mathbb{R}^{2} with \mathbb{C}, we can view p as a smooth map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Define $f: S^{2} \rightarrow s^{2}$ by

$$
f(p)=\left\{\begin{array}{cl}
\Psi_{N} \circ p \cdot \Psi_{N}^{-1}(p) & \text { if } p \neq N_{2} \\
N & \text { if } p=N
\end{array}\right.
$$

I claim that f is smooth. Indeed, since by the construction of f, the coordinate representation of f with respect to the pair $\left(\mathbb{R}^{2}, \Psi_{N}\right) \&\left(\mathbb{R}^{2}, \Psi_{N}\right)$ of parametrization (the first one on the source of f, the second one on the target), is

Hence f is smooth at each point $\left.p \in S^{2} \backslash h N\right\}$. To check that f is also smooth at $p=N$,
consider

$$
\psi_{s} \circ f \circ \psi_{s}^{-1}(z)=\left\{\begin{array}{cc}
\psi_{s} \cdot \psi_{N}^{-1} \circ p \circ \psi_{N} \cdot \psi_{s}^{-1}, & z \neq 0 \\
0 & , z=0
\end{array}\right.
$$

We know that

$$
\begin{aligned}
\Psi_{S N}(z) & =\Psi_{S} \cdot \Psi_{N}^{-1}(z)=\frac{1}{|z|^{2}} z=\frac{1}{z \cdot \bar{z}} \cdot z=\frac{1}{\bar{z}} \\
\Rightarrow & \Psi_{N S}(z)=\Psi_{S N}^{-1}(z)=\frac{1}{\bar{z}}
\end{aligned}
$$

Hence, we compute

$$
\begin{aligned}
& \Psi_{S N} \circ p \circ \psi_{N S}(z)=\psi_{S N}\left(\frac{1}{\bar{z}^{n}}+\frac{a_{n-1}}{\bar{z}^{n-1}}+\cdots+a_{0}\right) \\
& =\psi_{S N}\left(\frac{1+a_{n-1} \bar{z}+\ldots+a_{0} \bar{z}^{n}}{\bar{z}^{n}}\right) \\
& =\frac{z^{n}}{1+\bar{a}_{n-1} z+\ldots+\bar{a}_{0} z^{n}}, \quad z \neq 0 .
\end{aligned}
$$

This yields that $\psi_{s} \circ f_{0} \psi_{s}^{-1}$ is smooth even at $z=0$, that is f is smooth everywhere on S^{\prime} (or, simply, f is smooth).

Thu Suppose $f: S_{1} \rightarrow S_{2}$ and $g: S_{2} \rightarrow S_{3}$ cere smooth maps between surfaces. Then $g \circ f: S_{1} \rightarrow S_{3}$ is also smooth.
Proof Pick a pt $p_{1} \in S_{1}$ and denote

$$
p_{2}:=f\left(p_{1}\right) \in S_{2}, p_{3}:=g\left(p_{2}\right)=g\left(f\left(p_{2}\right)\right) \in S_{3}
$$

Pick parametrizations

In a sufficiently small ubhd of p_{1} we have

$$
\psi_{3}^{-1} \circ(g \circ f) \circ \psi_{1}=\underbrace{\psi_{3}^{-1} \circ g \circ \psi_{2}}_{G \in C^{\infty}} \circ \underbrace{\psi_{2}^{-1} \circ f \circ \psi_{1}}_{F \in C^{-}}
$$

$\Rightarrow g \circ f$ is smooth in a ubled of p_{1}

$$
\Rightarrow g \circ f \in C^{\infty}\left(S_{1} ; S_{3}\right)
$$

Rem 1 The proof shows that the wordinate representation of the composition is the composition of coordinate representations.
Rem 2 The proof also shows that the following holds:

If $\gamma: I \rightarrow S_{1}$ is a smooth curve and $f: S_{1} \rightarrow S_{2}$ is a smooth map, then $f \circ \gamma: I \rightarrow S_{2}$ is also a smooth ceerve.
Def A smooth map $f: S_{1} \rightarrow S_{2}$ is called a diffeoneorphism, if there exists a smooth map $g: S_{2} \rightarrow S_{1}$ st.

$$
g \circ f=i d_{s_{1}} \text { and } f \circ g=i d_{s_{2}}
$$

Ex The antipodal map $a: S^{2} \rightarrow S^{2}$ is a diffeoworphism.
Ex The hyperboloid $H=\left\{x^{2}+y^{2}-z^{2}=1\right\}$ and cylinder $C=\left\{x^{2}+y^{2}=1\right\}$ are diffeoworphic, that is there exists a diffeomorphism $f: H \rightarrow C$.

Explicitly, define
$h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $h(x, y, z)=\left(\frac{x}{\sqrt{1+z^{2}}}, \frac{y}{\sqrt{1+z^{2}}}, z\right)$ Clearly, $h \in C^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$. If $(x, y, z) \in H$, then $\left(\frac{x}{\sqrt{1+z^{2}}}\right)^{2}+\left(\frac{y}{\sqrt{1+z^{2}}}\right)^{2}=\frac{x^{2}+y^{2}}{1+z^{2}}=1$, that is $f:=\left.h\right|_{H}: H \longrightarrow C$ is smooth.
Exercise show that the restriction of $h^{-1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

$$
h^{-1}(u, v, w)=\left(\sqrt{1+w^{2}} u, \sqrt{1+w^{2}} v, w\right)
$$

yields a smooth inverse of f.
Rem A map $f: S_{1} \rightarrow S_{2}$ may fail to be a diffeomorphism in the following two ways: either f^{-1} does not exist or f^{-1} exists but is not smooth.

Nou-example Consider a map

$$
f: C \longrightarrow C, \quad f(x, y, z)=\left(x, y, z^{3}\right)
$$

which is smooth.
The inverse $f^{-1}: C \rightarrow C$ exists:

$$
f^{\prime \prime}(x, y, z)=(x, y, \sqrt[3]{z})
$$

It is continuous, but fails to be smooth.
Exercise Compute a coordinate representation of f^{-1} and check that this fails to be smooth.

