The tangent plane
Let S be a surface and $p \in S$.
Def A vector $V \in \mathbb{R}^{3}$ is said to be tangent to S at P, if $\exists a$ smooth curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow S$ sit.

$$
\gamma(0)=p \quad \text { and } \quad \dot{\gamma}(0)=v .
$$

When computing the tangent vector of γ we think of y as a curve in \mathbb{R}^{3}.
Ex $S=S^{2} \Rightarrow p$ arbitrary. Recall the curve

$$
\gamma_{v}(t)=\cos t \cdot p+\sin t \cdot v,
$$

where $\|v\|=1$ and $v \perp p$. Then
$\dot{\gamma}_{v}(0)=v$. Hence, v is tangent to s^{2} at p.
$T_{p} S=$ the set of all tangent vectors to S at P.
Prop Let $\psi: V \rightarrow V$ be a parametrization such that $\psi\left(u_{0}, v_{0}\right)=\rho$. Then

$$
T_{p} S=\operatorname{Im} D_{\left(u, v_{0}\right)} \Psi
$$

In particular, $T_{p} S$ is a vector space of dim. 2 .

Proof
Step $1 \operatorname{Im} D_{\left(u, v_{0}\right)} \psi \subset T_{p} S$
Assume $v \in \operatorname{Im} D_{\left(u_{0}, v_{-}\right.} \psi \Rightarrow$ $\exists w \in \mathbb{R}^{2}$ sit. $D_{(u, v .)} \Psi(w)=v$
Consider the curve $\beta:(-\varepsilon, \varepsilon) \rightarrow V$

$$
\beta(t)=\left(u_{0}, v_{0}\right)+t \cdot w .
$$

Then $\gamma(t):=\psi_{0} \beta(t)$ is a smooth curve in s st.

$$
\begin{aligned}
& \gamma(0)=\Psi(\beta(0))=\Psi\left(u_{0}, v_{0}\right)=p \\
& \dot{\gamma}(0)=D_{\left(u, v_{0}\right)} \Psi(w)=v . \\
& \Rightarrow v \in T_{p} \delta .
\end{aligned}
$$

Step $2 T_{p} S \subset \operatorname{Im} D_{\left(u, v_{0}\right)} \psi$
If $v \in T_{p} S$, then $\exists \gamma:(-\varepsilon, \varepsilon) \rightarrow S$ s.t.
$\gamma(0)=p$ \& $\dot{\gamma}(0)=v$. Can assume
In $\gamma \subset U$ by choosing ε smaller if necessary.
If $\varphi=\psi^{-1}$, then
$\beta(t):=\varphi \cdot \gamma(t)$ is a smooth curve
in $V \subset \mathbb{R}^{2}$ sit. $\beta(0)=\left(u_{0}, v_{0}\right)$.
Denote $w:=\dot{\beta}(0) \in \mathbb{R}^{2}$. Then we have

$$
\begin{aligned}
V & =\dot{\gamma}(0)=(\underbrace{\psi_{0}^{0} \beta}_{u})(0)=\left(D_{\left(u, v_{0}\right)} \psi\right)(\dot{\beta}(0)) \\
& =D_{\left(u, v_{0}\right)} \psi(w) \in \operatorname{\psi ^{-1}\cdot \gamma } \operatorname{Im}_{\left(u, v, v_{0}\right)} \psi .
\end{aligned}
$$

Step $3 \operatorname{dim} T_{p} S=2$.
This follows immediately from the injectivity of $D_{\left(0, v_{0}\right)} \psi$.

Exercise Assume $V \perp p \in S^{2}$ and $\|v\|=2$. Find a curve in S^{2} through P with the tangent vector V.
Prop Pick $p \in S$ and recall that there exists a ubhd $W \subset \mathbb{R}^{3}$ of p and a smooth function $\varphi: W \rightarrow \mathbb{R}$ s.t.

$$
\begin{aligned}
S \cap W=\{q \in W \mid \varphi(q)=0\} \text { and } & \nabla \varphi(q) \neq 0 \\
& \forall q \in W .
\end{aligned}
$$

Then

$$
T_{p} S=\nabla \varphi(p)^{\perp}
$$

Proof If γ is any curve in S through (4) P, then

$$
\begin{aligned}
& \varphi \circ \gamma(t)=\left.0 \quad \forall t \Rightarrow \frac{d}{d t}\right|_{\substack{t_{20}}}(\gamma(t))=0 \\
& \langle\nabla \varphi(p), \dot{\gamma}(0)\rangle \\
& \Rightarrow T_{p} S \subset \nabla \varphi(p)^{\perp} \\
& \Rightarrow T_{p} S=\nabla \varphi(p)^{\perp}
\end{aligned}
$$

both have dimension 2
Ex 1) $\forall p \in S^{2} \quad T_{p} S^{2}=p^{\perp}$
Indeed, for $\varphi(x, y, z)=x^{2}+y^{2}+z^{2}-1$ we have $\nabla \varphi(x, y, z)=2(x, y, z)$.

$$
\begin{aligned}
& \text { 2) } p=(x, y, z) \in H=\{\underbrace{x^{2}+y^{2}-z^{2}-1}_{\varphi(x, y, z)}=0\} \\
& \nabla \varphi(p)=2(x, y,-z) \neq 0 \\
& \Rightarrow T_{p} H=(x, y,-z) \perp \\
& =\left\{v=\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3} \mid x v_{1}+y v_{2}-z v_{3}=0\right\} \\
& \text { 3) } p=(x, y, z) \in C=\left\{x^{2}+y^{2}=1\right\}
\end{aligned} \begin{aligned}
& T_{p} C=\left\{v=\left(v_{1}, v_{2}, v_{3}\right) \mid x v_{1}+y v_{2}=0, v_{3}\right. \text { arbitrary. }
\end{aligned}
$$

Differential of a smooth map
Let S be a surface and $f \in C^{\infty}(S)$. Define a map $d_{p} f: T_{p} S \rightarrow \mathbb{R}$ as follows:
for $V \in T_{P} S$ choose a smooth curve γ throught p with $\dot{\gamma}(0)=v$ and set

$$
d_{p} f(v)=\left.\frac{d}{d t}\right|_{t=0} \quad f_{0} \gamma(t)
$$

Prop $d_{p} f$ is a well-detined linear map.
Proof
Step 1 $d_{p} f$ is well-detined.
If γ_{1} and γ_{2} are two nerves through p st. $\dot{\gamma}_{1}(0)=v=\dot{\gamma}_{2}(0)$, then for $\beta_{j}:=\psi^{-1} \cdot \gamma_{j}$ we have

$$
\begin{aligned}
& \gamma_{j}(t)=\psi \cdot \beta_{j}(t) \Rightarrow V=D_{0} \psi\left(\dot{\beta}_{1}(0)\right)=D_{0} \Psi\left(\dot{\beta}_{2}(0)\right) \\
& \Rightarrow \dot{\beta}_{1}(0)=\dot{\beta}_{2}(0)=: w \\
&\left.\frac{d}{d t}\right|_{t=0} f \cdot \gamma_{1}(t)=\left.\frac{d}{d t}\right|_{t=0}\left(f \cdot \psi \cdot \psi^{-1} \cdot \gamma_{1}(t)\right) \\
&=\frac{d}{d t}\left(F \cdot \beta_{1}(t)\right) \\
&=D_{0} F(w)
\end{aligned}
$$

Similarly, $\left.\frac{d}{d t}\right|_{t=0} f_{0} \gamma_{2}(t)=D_{0} F(\omega)$

$$
\left.\Rightarrow \frac{d}{d t}\right|_{t=0}\left(f_{0} \gamma_{1}(t)\right)=\left.\frac{d}{d t}\right|_{t=0}\left(f_{0} \gamma_{2}(t)\right)
$$

Step $2 d_{p} f \circ D_{0} \psi=D_{0} F$, where $F:=f_{0} \psi$.
This follows from the pf of steps.
Step $3 d_{p} f$ is linear

$$
d_{p} f \circ D_{0} \psi=D_{0} F
$$

$\Rightarrow d_{p} f$ is linear
linear
Exercise If $h \in C^{\infty}\left(\mathbb{R}^{3}\right)$ and $f=h l_{s}$, then $\forall p \in S$ we have

$$
d_{p} f=\left.D_{p} h\right|_{T_{p} s}
$$

Def A point $p \in S$ is called critical for $f \in C^{\infty}(S)$, if $d_{p} f=0$, that is $d_{p} f(v)=0$ $\forall v \in T_{p} S$.
Prop If p is a pt of los. max. (min) for f, then p is critical for f.
Proof p is a p^{+}of los. mex for $f \Rightarrow$ \forall curve γ through $p, 0$ is a pt of bloc. max for $f \circ \gamma$ $\left.\Rightarrow \frac{d}{y t}\right|_{t=0} f-\gamma=0$

Prop Let $h, \varphi \in C^{\infty}\left(\mathbb{R}^{3}\right)$. Assume $\nabla \varphi(p) \neq 0$
for any $p \in S=\varphi^{-1}(0)$. If $p \in S$ is a pt of loo. max. for $f=h / s$, then

$$
\nabla h(p)=\lambda \nabla \varphi(p)
$$

for some $\lambda \in \mathbb{R}$.
Proof Notice: S is a surface and

$$
\begin{aligned}
& T_{p} S=\left\{v \in \mathbb{R}^{3} \mid\langle v, \nabla \varphi(p)\rangle=0\right\} \\
& d_{p} f=0\left.\Leftrightarrow D_{p} h\right|_{T_{p} S}=0 \\
& \Leftrightarrow\langle v, \nabla h(p)\rangle=0 \quad \forall v \in T_{p} S \\
& \Leftrightarrow \nabla h(p)=\lambda \nabla \varphi(p) \text { for some } \lambda \in \mathbb{R} \text { 四 }
\end{aligned}
$$

Rein This proof is in a sense more conceptual then the pf of Thu 1 on P. 4 of Part 1.
More generally, for any $f \in C^{\infty}\left(S ; \mathbb{R}^{n}\right)$ the differential $d_{p} f:{ }^{{ }^{\prime}}{T_{p}} S \rightarrow \mathbb{R}^{n}$ is defined by the same formula.
Also, the differential is well-defined for maps $f: \mathbb{R}^{n} \rightarrow S, d_{p} f: \mathbb{R}^{n} \rightarrow T_{f(p)} S$

$$
f: S_{1} \rightarrow S_{2}, d_{p} f: T_{p} S_{1} \rightarrow T_{f(p)} S_{2}
$$

In the latter case, if $\dot{\gamma}(0)=v \in T_{p} S_{1}$, then

$$
d_{p} f(v)=\left.\frac{d}{d t}\right|_{t=0}(f \cdot \gamma(t))
$$

Prop Let S_{1}, S_{2}, S_{3} be smooth surfaces. For any smooth maps $f: S_{1} \rightarrow S_{2}$ and $g: S_{2} \rightarrow S_{3}$ and any $p t p \in S_{1}$ we have

$$
D_{p}(g \circ f)=D_{f(p)} g \circ D_{p} f
$$

This also holds if any of S_{i} is replaces by an open subset of \mathbb{R}^{n}.
Proof Let γ_{1} be any smooth curve in S_{1} through P. Denote $\gamma_{2}=f-\gamma$, which is a smooth curve in S_{2} through $f(p)$. If $\dot{\gamma}_{1}(0)=V_{1}$, then $v_{2}:=\dot{\gamma}_{2}(0)=D_{p} f\left(v_{1}\right)$ by the definition of $D_{p} f$. Hence,

$$
\begin{aligned}
D_{p}(g \circ f)\left(v_{1}\right)= & \left.\frac{d}{d t}\right|_{t=0}(\underbrace{\left.g \circ f \circ \gamma_{1}(t)\right)}_{\gamma_{2}} \\
= & \left.\frac{d}{d t}\right|_{t=0}\left(g \circ \gamma_{2}(t)\right)
\end{aligned}
$$

Cor If $f: S_{1} \rightarrow S_{2}$ is a diffeomurplism, then $\forall p \in S_{1} \quad d_{p} f: T_{p} S_{1} \rightarrow T_{f(p)} S_{2}$ is an isonearphism.
Def A map $f: S_{1} \rightarrow S_{2}$ is called a local diffeomurphism if $\forall p \in S_{1} \exists$ a ubhd $U_{1} \subset S_{1}$ and a ubhd $v_{2} \subset S_{2}$ of $f(p)$ s.t. $f: U_{1} \rightarrow U_{2}$ is a diffeomorphism.

Thu Let $f: S_{1} \rightarrow S_{2}$ be a smooth map s.t. $\quad \forall p \in S_{1} \quad d_{p} f: T_{p} S_{1} \rightarrow T_{f(p)} S_{2}$ is an isomorphism. Then f is a local diffeonmorphism.
Proof Pick any $p \in S_{1}$ and parametrizations $\Psi_{1}: V_{1} \rightarrow W_{1} \subset S_{1}$ and $\Psi_{2}: V_{2} \subset W_{2} \subset S_{2}$

Without loss of generality $\Psi_{1}(0)=p$ and

$$
\psi_{2}(0)=f(p) .
$$

$$
F=\Psi_{2}^{-1} \cdot f \cdot \Psi_{1} \Rightarrow d_{0} F=d_{f(p)} \Psi_{2}^{-1} \cdot d_{p} f \cdot d_{0} \Psi_{1}
$$

$d_{0} \Psi_{1}: \mathbb{R}^{2} \rightarrow T_{p} S_{1}$ is an iso.
$d_{f(p)} \Psi_{2}: T_{f(p)} S_{2} \rightarrow \mathbb{R}^{2}$ is an iso.
$d_{p} f$ is an iso $\Rightarrow d_{0} F$ is an iso.
From analysis, it is known that \exists a ubhd $0 \in \tilde{V}_{1} \subset V_{1}$ and a ubhd $\tilde{V}_{2} \subset V_{2}$ of 0 such that $F: \tilde{V}_{1} \rightarrow \tilde{V}_{2}$ is a diffeomerophine Denote $v_{1}=\Psi_{1}\left(\tilde{v}_{1}\right), v_{2}=\Psi_{2}\left(\tilde{V_{2}}\right)$.

Then

$$
\left.f\right|_{U_{1}}=\left.\psi_{2} \quad \circ F \cdot \varphi_{1}^{-1}\right|_{U_{1}}: U_{1} \rightarrow U_{2}
$$

is a diffeomorphism, since it is a composition of diffeomorphisms.
Rem It follows from the proof, that

$$
d_{p} f=d_{0} \psi_{2} \cdot d_{0} F \cdot d_{p} \psi^{-1}
$$

In particular,
$d_{p} f$ is injective $\Leftrightarrow D_{\psi_{1}(p)}$ is injective

surg.	\Longleftrightarrow	surg.
iso	\Longleftrightarrow	iso

Let $f \in C^{\infty}\left(S_{1} ; S_{2}\right)$.
Deft 1) A pt $p \in S_{1}$ is called a critical pt of f if $d_{p} f$ is not surjective \Longleftrightarrow $d_{p} f$ is not injective $\Longleftrightarrow d_{p} f$ is not an iso.
2) $q \in S_{2}$ is called a regular value of f, if $\forall p \in f^{-1}(q)$ is regular (non-critical), i.e., if $\forall p \in f^{-1}(q) \quad d_{p} f$ is surjective $\Leftrightarrow d_{p} f$ is injective $\Leftrightarrow d_{p} f$ is an iso.

Ex $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \cong \mathbb{C}, \quad f(z)=z^{n}$, $n \in \mathbb{R}, n \geqslant 2$. It is known from analysis that $D_{z} f: \mathbb{C} \rightarrow \mathbb{C}$ can be identified with the map $h \longrightarrow f^{\prime}(z) \cdot h$. Hence, z is critical iff $f^{\prime}(z)=0 \Longleftrightarrow n z^{n-1}=0$ $\Leftrightarrow z=0$. Hence, f has a single critical pt $z=0$ and a single critical value, the zero. All other pts are regular and any non-zero value is also regular.

Thun (The fundamental theorem of algebra) Let $g(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$ be a polynomial of degree $u \geqslant 1$ with $c x$. coefficients. Then p has af least one $c x$ root. Proof Recall that the map $f: S^{2} \rightarrow S^{2}$,

$$
f(p)= \begin{cases}N & p=N \\ \Psi_{N} \circ q \circ \Psi_{N}^{-1}, & , p \neq N\end{cases}
$$

is smooth.
Step $1 f$ has has at most n crit pts(values). $p \in S^{2} \backslash\{N\}$ is critical $\Longleftrightarrow z:=\Psi_{N}(p)$ is critical for $g \Longleftrightarrow g^{\prime}(z)=0$, that is

$$
n z^{n-1}+(n-1) a_{n-1} z^{n-2}+\cdots+a_{1}=0
$$

This can have at most $(n-1)$ roots.
Step 2 Denote by $R(f)$ the set of regular values of f. Then for any $r \in \mathbb{R}(f)$ the set $f^{-1}(r)$ is finite and the map

$$
R(f) \rightarrow \mathbb{Z}_{\geqslant 0}, \quad r \longmapsto \not \not \not f^{-1}(r)
$$

is constant.
Let $p \in f^{-1}(z), \quad r \in R(f) \Longrightarrow$
$f(p)=r \quad \& \quad d_{p} f$ is an iso
$\Rightarrow \exists$ a ubhd v_{p} of p and a ubhd W_{2} s.t.
$f: V_{p} \rightarrow W_{r}$ is a diffed. In particular, $f^{-1}(r) \cap v_{p}=\{p\} \Longrightarrow$
$f^{-1}(r)$ is discrete.
However, $f^{-1}(r)$ is a closed subset of S^{2}, hence compact. But a compact discrete set must be finite.
Denote $f^{-1}(r)=\left\{p_{1}, \ldots, p_{m}\right\}$ and the corresponding ubhds $v_{1, \ldots}, v_{m}, w_{1,2}, w_{m}$.
Set $W:=W_{1} \cap \ldots \cap W_{m}$ and
$\tilde{v}_{j}:=f^{-1}(w) \cap v_{j}$. Then for each $j \leqslant m$ the map $f: \tilde{v}_{j} \rightarrow W$ is a diffeomorphism. In particular, $\forall r^{\prime} \in W \quad \exists!p_{j}^{\prime} \in \widetilde{\sigma}_{j}$ s.t. $f\left(p_{j}^{\prime}\right)=r^{\prime}$. Hence, $\not \# f^{-1}\left(r^{\prime}\right)=\not f^{-1}(r)$ $\forall r^{\prime} \in W$, so that the function

$$
\begin{equation*}
R(f) \longrightarrow \mathbb{Z}, \quad r \longmapsto \neq f^{-1}(2) \tag{*}
\end{equation*}
$$

is locally constant.
However, $R(f)$ is the complement of a finite number of pts in S^{2}, hence connected. Therefore, (*) is (globally) constant.

Step 3 We prove this thu.
Pick any pairwise distinct pts $p_{12}, p_{n+1} \in$ $S^{2} \backslash\{N\}$ s.t. $f\left(p_{1}\right), \ldots f\left(p_{n+1}\right)$ are also pairwise distinct. Since f has at most n critical values, at leas one $p t$ from $\left\{f\left(p_{1}\right), \ldots, f\left(p_{n+1}\right)\right\}$ is a regular value and (*) does not vanish at this pt. Hence,
(*) vanishes nowhere on $R(f)$.
If S is a critical value of S, then $f^{-1}(S) \neq \varnothing$, since $f^{-1}(S)$ contains a critical pt. However,

$$
f^{-1}(s) \neq \varnothing \quad \Leftrightarrow \quad g^{-1}(0) \neq 0 .
$$

If S is a regular value, then by Step $2 \nRightarrow f^{-1}(s) \geqslant 1 \Rightarrow f^{-1}(s) \neq \phi$. This finishes the proof.

Orientability
Let $S \subset \mathbb{R}^{3}$ be a (smooth) surface. Deft 1) A (smooth) map $v: S \rightarrow \mathbb{R}^{3}$ is called a (smooth) tangent vector field on S, if $\quad \forall p \in S \quad v(p) \in T_{p} S$.
2) A (smooth) map $n: S \rightarrow \mathbb{R}^{3}$ is called a (smooth) normal field on S, if $\quad \forall p \in S \quad n(p) \perp T_{p} S$.
Ex Set $S=S^{2}, n(x)=x$. Then n is a normal vector field on S^{2}.

Lemma Let $\Psi: V \rightarrow U \subset S$ be a parametrization. Then V admits a unit normal field n on V, that is $\forall p \in U \quad n(p) \perp T_{p} s$ and $|u(p)|=1$.
Proof ψ is a param. \Longrightarrow $\forall p \in U \quad \exists!q \in V$ s.t. $\psi(q)=p$ and

$$
D_{q} \psi: \mathbb{R}^{2} \rightarrow T_{p} S=\operatorname{Im}\left(D_{q} \psi\right)
$$

Is an isomorphism. Hence, $D_{q} \psi$ maps a basis of \mathbb{R}^{2} onto a basis of $T_{p} S$. Therefore, the image of the standard basis $\left.\left(\partial_{u} \psi, \partial_{v} \psi\right)\right|_{q}$ is a basis of $T_{p} S$.

Define

$$
n(p)=\frac{\partial_{u} \psi \times \partial_{s} \psi}{\left|\partial_{u} \psi \times \partial_{s} \psi\right|}
$$

where " x " means the cross -product in \mathbb{R}^{3}. This is well-defined, since $\partial_{4} \psi \times \partial_{v} \psi \neq 0$.
Exercise: Check that n is smooth.
Lemma If S is connected, then there are at most 2 non-equal unit normal fields on S.

Proof Let n_{1} and u_{2} be unit norm. fields.

$$
\begin{aligned}
& \left.\forall p \in S \quad \begin{array}{l}
n_{1}(p) \perp T_{p} S \\
\\
n_{2}(p) \perp T_{p} S \\
\\
\left|u_{1}(p)\right|=1=\left|n_{2}(p)\right|
\end{array}\right\} \Rightarrow n_{2}(p)= \pm u_{1}(p) \\
& S_{ \pm}:=\left\{p \in S \mid n_{2}(p)= \pm n_{1}(p)\right\}
\end{aligned}
$$

Then both S_{+}and S_{-}are closed and $S=S_{+} \cup S_{-}$. Hence, either

$$
S_{+}=\phi \quad \Leftrightarrow \quad n_{2}(p)=-n_{1}(p) \quad \forall p \in S
$$

Or

$$
S_{-}=\phi \quad \Leftrightarrow \quad n_{2}(p)=n_{1}(p) \quad \forall p \in S
$$

Deft A surface S is said to be orientable, if S admits a mit normal field.

It should be intuitively clear that any unit normal field selects a side" of the surface. A choice of the unit normal bield ("a side of S ") is called an orientation of S. Thus, any surface S admits at most 2 distinct orientations.
Prop (Preimages are orientable)
If 0 is a regular value of $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}$, then $S:=\varphi^{-1}(0)$ admits a unit normal field.

Here, just like in the definition on P. 11, 0 is said to be the regular value of φ if $\quad \forall p \in S=\varphi^{-1}(0)$
$D_{p} \varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is surjective

$$
\Leftrightarrow \nabla \varphi(p) \neq 0, \text { since } \quad \begin{aligned}
& D_{p} \varphi(v)=\langle\nabla \varphi(p), v\rangle \\
& v \in \mathbb{R}^{3}
\end{aligned}
$$

Proof of the proposition
$T_{p} S=\nabla \varphi(p)^{\perp} \Longrightarrow \nabla \varphi$ is a normal field
O is a regular value of $\varphi \Rightarrow \nabla \varphi$ vanishes $\begin{gathered}\text { nowhere }\end{gathered}$
$\Rightarrow \quad u(p):=\frac{\nabla \varphi(p)}{|\nabla \varphi(p)|}$ is a unit normal

Rem In the definition of orientability, it is only important, that the normal field exists, is non-vanishing and continuous.
A non-example: the Möbins band. One can obtain the Mobins band from the strip by gluing the opposite sides as shown on the figure.

More formally, the Möbins band is the image of the map

$$
\begin{aligned}
& \Psi:[0,2 \pi] \times(-1,1) \rightarrow \mathbb{R}^{3}, \\
& \Psi(u, v)=\left(\left(2-v \sin \frac{u}{2}\right) \sin u,\left(2-v \sin \frac{u}{2}\right) \cos u, v \cos \frac{u}{2}\right)
\end{aligned}
$$

Exercise show that the image of Ψ is a surface indeed.

We showed that any point on a surface admits an orientable neighbourhood U. Moreover, it follows from the proof that given $0 \neq n_{0} \perp T_{p .} s$ at some $p_{0} \in U$, there is a unique orientation n of v such that $n\left(p_{0}\right)=\frac{n_{0}}{\left|n_{0}\right|}$.
With this understood, $\forall p \in L$ pick an orient able neighbourhood J_{p}. Since L is compact, there is a finite collection U_{1}, \ldots, U_{n} covering L. Choose a $p t \quad p_{1} \in L \cap U_{1}$ and a vector $n_{1} \in T_{p} S^{1},\left|u_{1}\right|=1$. This determines uniquely a normal field n on U_{1} such that $n\left(p_{1}\right)=n_{1}$. If $U_{2} \cap U_{1} \neq \varnothing$, then there exists a unique smooth extension of n to $U_{1} \cup U_{2}$. After finitely many steps we obtain a normal field n on $U_{1} \cup \ldots v U_{n} \supset L$. However, as one travels once along L, this normal field must change its direction, that is $n\left(p_{1}\right)=-n\left(p_{1}\right)$, which is impossible. Hence, the Mobious band does not admit a unit normal field, that is the Möbius band is non-orientable.

Let S be a surface.
Deft A collection $A=\left\{\left(\Psi_{a},-V_{a}, V_{a}\right) \mid a \in A\right\}$ of parametrization of S is said to be an atlas, if $\bigcup_{a \in A} V_{a}=S$.

Recall that for $a, b \in A$ the map

$$
\theta_{a b}:=\psi_{a}^{-1} \cdot \psi_{b}: V_{a b} \rightarrow \mathbb{R}^{2}
$$

is called the change of coordinates map:
Def An atlas A on S is said to be oriented, if

$$
\operatorname{det}\left(D_{(a, r)} \Theta_{a b}\right)>0
$$

for any $(u, v) \in V_{a b}$.
Ex For $\left.S=S^{2}, \quad A=\left\{\left(\Psi_{N}, \mathbb{R}^{2}, S^{2} \backslash\{N\}\right),\left(\Psi_{s}, R^{2} ; S^{2} \mid(s)\right\}\right)\right\}$ is an atlas. We have

$$
\theta_{S N}(u, v)=\frac{1}{u^{2}+v^{2}}(u, v)
$$

A computation yields $\operatorname{det}\left(D \theta_{S N}\right)<0$, so that A is not an oriented atlas.
Consider, however

$$
B=\left\{\left(\psi_{N}, \mathbb{R}^{2}, s^{2} \backslash\{N\}\right),\left(\hat{\psi}_{s}, \mathbb{R}^{2}, s^{2} \backslash\{s\}\right)\right\}
$$

where $\hat{\psi}_{s}(u, v)=\psi_{s}(-u, v)=\psi_{s} \circ \sigma(u, v)$,
where $\sigma(u, v)=(-u, v)$. Then

$$
\hat{\theta}_{S N}=\hat{\psi}_{S}^{-1} \circ \psi_{N}=\left(\psi_{S} \circ \sigma\right)^{-1} \circ \psi_{N}=\sigma_{\substack{11 \\ \sigma}}^{-1} \cdot \theta_{S N}
$$

$$
\sigma \text { is linear } \Rightarrow D \hat{\theta}_{S N}=6 . D \theta_{S N}
$$

$$
\Rightarrow \operatorname{det} D \hat{\theta}_{S N}=\operatorname{det}_{11}^{-1} \quad \underset{0}{\Delta} \cdot \operatorname{det} \theta_{S N}>0
$$

$\Rightarrow \beta$ is an oriented atlas on S^{2}.

Prop A surface S is orientable if an only if S admits an oriented atlas.
Proof
Step 1 If S is orientable, then S admits an oriented atlas.

Choose a mit normal field n on S and an atlas A on S.

Define a new atlas B as follows:
If $\psi_{a}: V_{a} \rightarrow \sigma_{a}$ belongs to A and $\operatorname{det}\left(\partial_{u} \psi_{a}, \partial_{v} \psi_{a}, n\left(\psi_{a}(u, v)\right)\right)>0$, then $\left(\psi_{a}, V_{a}, U_{a}\right)$ belongs to \mathcal{B}. If $\left.\operatorname{det} C\right)<0$, then $\left(\Psi_{a} \cdot \sigma, \sigma\left(V_{a}\right), \sigma_{a}\right)=\left(\hat{\Psi}_{a}, \hat{V}_{a}, U_{a}\right)$ belongs to \mathbb{J}, where $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, G(u, v)=(-u, v)$.

$$
\begin{aligned}
\Rightarrow \operatorname{det} & \left(\partial_{u} \hat{\psi}_{a}, \partial_{v} \hat{\psi}_{a}, u\left(\hat{\psi}_{a}(u, v)\right)\right) \\
= & \operatorname{det}\left(-\partial_{u} \psi_{a}, \partial_{v} \psi_{a}, u()\right)>0
\end{aligned}
$$

We obtain:
a) If $\psi_{a}, \psi_{b} \in B$, then

$$
\Psi_{a}: \underset{\substack{\left(x_{1}, x_{2}\right)}}{V_{a}} \rightarrow V_{a} ; \Psi_{b}: V_{\left(y_{1}, y_{2}\right)} \rightarrow V_{b}
$$

$\theta_{a b}: V_{e} \rightarrow V_{a}$ (defined on a subset of V_{b})

$$
\begin{gathered}
y \longmapsto \theta(y)=\theta_{a b}(y) \\
\Psi_{b}=\psi_{a} \circ \theta \Rightarrow \\
\partial_{y_{1}} \Psi_{b}=\partial_{x_{1}} \psi_{a}(\theta(z)) \partial_{y_{1}}+\partial_{x_{2}} \Psi_{a}(\theta(y)) \partial_{y_{1}} \theta_{2} \\
\partial_{y_{2}} \psi_{b}=\partial_{x_{2}} \psi_{a}(\theta(y)) \partial_{y_{2}} \theta_{1}+\partial_{x_{2}} \psi_{a}(\theta(y)) \partial_{y_{2}} \theta_{2}
\end{gathered}
$$

Or simply $\left(\partial_{y_{1}} \psi_{b}, \partial_{y_{2}} \psi_{b}\right)=\left(\partial_{x_{1}} \psi_{a}, \partial_{x_{2}} \psi_{b}\right) \cdot \partial_{y} \theta$,
where

$$
\partial_{y} \theta=\left(\begin{array}{ll}
\partial_{y_{1}} \theta_{1} & \partial_{y_{2}} \theta_{1} \\
\partial_{y_{1}} \theta_{2} & \partial_{y_{2}} \theta_{2}
\end{array}\right)
$$

is the Jacobi matrix of $\theta=\theta_{a b}$.

$$
\begin{aligned}
& \Rightarrow\left(\partial_{y_{1}} \psi_{b}, \partial_{y_{2}} \psi_{b}, u\right)=\left(\partial_{x_{1}} \psi_{a}, \partial_{x_{2}} \psi_{a}, n\right)\left(\begin{array}{l|l}
\partial_{y} \theta & 0 \\
\hline 00 & 1
\end{array}\right) \\
& \Rightarrow \operatorname{det}\left(\partial_{y_{1}} \psi_{b}, \partial_{y_{2}} \psi_{b}, n\right)= \\
& 0 \quad=\operatorname{det}\left(\partial_{x_{1}} \psi_{a}, \partial_{x_{2}} \psi_{a}, n\right) \cdot \operatorname{det}\binom{\partial_{y} \theta}{0^{2}} \\
& \text { by the assumption } \\
& \quad \operatorname{det}\left(\partial_{y} \theta\right)
\end{aligned}
$$

$$
\Rightarrow \quad \operatorname{det}\left(\partial_{y} \theta\right)>0
$$

b) If $\hat{\psi}_{a}$ and $\hat{\psi}_{b}$ belong to B, the same computation yields

$$
\operatorname{det}\left(\partial_{y} \theta_{a b}\right)>0
$$

We have: $\psi_{b}=\psi_{a} \cdot \theta_{a b} \Rightarrow$

$$
\begin{gathered}
\Rightarrow \psi_{e} \cdot \sigma=\psi_{a} \circ \theta_{a b} \cdot \sigma=\left(\psi_{a} \cdot \sigma\right) \cdot \sigma \cdot \theta_{a b} \cdot \sigma \\
\hat{\psi}_{b}
\end{gathered}
$$

Hence, the change of coordinates map between
$\hat{\psi}_{a}$ and $\hat{\psi}_{b}$ is $\hat{\theta}_{a b}:=\sigma-\theta_{a b} \circ \sigma$

$$
\begin{aligned}
\Rightarrow \operatorname{det}\left(D \hat{\theta}_{a b}\right) & =\operatorname{det} \sigma \cdot \operatorname{det} D \theta_{a b} \cdot \operatorname{det} \sigma \\
& =(\operatorname{det} \sigma)^{2} \operatorname{det} D \theta_{a b}>0
\end{aligned}
$$

c) ψ_{a} and $\hat{\psi}_{b}$ belong to B

A similar computation golds $\operatorname{det}\left(D \theta_{a b}\right)<0$ and if $\hat{\theta}_{a b}$ is the change of coordinates between ψ_{a} and $\hat{\psi}_{b}$, then

$$
\begin{aligned}
& \hat{\theta}_{a b}=\theta_{a b} \cdot \sigma \Rightarrow \\
& \operatorname{det} D \hat{\theta}_{a b}=\operatorname{det}\left(\begin{array}{c}
\left(D \theta_{a b}\right) \\
\hat{0}
\end{array} \underset{\hat{0}}{ } \quad \operatorname{det} \sigma>0 .\right.
\end{aligned}
$$

Thus, B is an oriented atlas.
Step 2 If S admits an oriented atlas, then S admits a unit normal field.

Let A be an oriented atlas on S and $\Psi_{a}: V_{a} \rightarrow U_{a} a$ parametrization from A.
If $\psi_{a}(q)=p \in U_{a}$, define $n(p)$ by

$$
u(p)=\left.\frac{\partial_{u} \psi_{a} \times \partial_{v} \psi_{a}}{\left|\partial_{u} \psi_{a} \times \partial_{v} \psi_{a}\right|}\right|_{q}
$$

Assume ψ_{b} is another parametrization from A such that $p \in v_{b}$. Then

$$
\begin{gathered}
\psi_{b}=\psi_{a} \cdot \theta_{\hat{\prime}} \Rightarrow \\
\left(\partial_{y_{1}} \Psi_{b}, \partial_{y_{2}} \psi_{b}\right)=\left(\partial_{x_{1}} \Psi_{a}, \partial_{x_{2}} \psi_{b}\right) \cdot D \theta \\
\Rightarrow \partial_{y_{1}} \Psi_{b} \times \partial_{y_{2}} \Psi_{b}=\underset{\underset{\sim}{v}}{\operatorname{det}}(D \theta) \cdot \partial_{x_{1}} \Psi_{a} \times \partial_{x_{2}} \Psi_{b}
\end{gathered}
$$

$\Rightarrow n(p)$ does not depend on the choice of parametrization near p
Since n is smooth in a ubhd of p, n is smooth everywhere.

