Partitions of unity
Recall that the function $\lambda: \mathbb{R} \rightarrow \mathbb{R}$

$$
\lambda(t)= \begin{cases}0 & \text { if } t \leqslant 0 \\ e^{-1 / t} & \text { if } \quad t>0\end{cases}
$$

is smooth.

For any fixed $r>0$ we have

$$
\lambda(t)+\lambda(r-t)>0 \quad \forall t \in \mathbb{R}
$$

positive for $t>0$ - positive for $r-t>0 \Leftrightarrow t<r$
Define

$$
\hat{y}_{2}(t):=\frac{\lambda(r-t)}{\lambda(t)+\lambda(r-t)}
$$

which is smooth everywhere on \mathbb{R}.

Denote also

$$
y_{2}(t):=x_{2}(t-1)
$$

Lemma For any $p t \quad p \in \mathbb{R}^{n}$ and any ubhd $V \nexists p$ there exists a ubhd $V \subset V$ and $p \in C^{\infty}\left(\mathbb{R}^{n}\right)$ sit. the following holds:

- $0 \leqslant \rho(x) \leqslant 1 \quad \forall x \in \mathbb{R}^{n}$
- $\left.P\right|_{V} \equiv 1$ and $P \mid \mathbb{R}^{n} V_{-} \equiv 0$.

Schematic graph of ρ
Proof For any $R>0$, consider

$$
\rho(x):=x_{1}\left(\frac{|x-p|}{R}\right)
$$

If $B_{2 R}(p) \subset U$, then p vanishes
the ball of radius 2R
centered at p
onside of $B_{2 R}(p)$, so vanishes outride of V. Also, $\rho(x) \equiv 1$ on $B_{R}(p)$ and $p \in C^{\infty}$. 四
Deft For a continuous function f on a topological space X the support of f is

$$
\operatorname{supp} f=\{x \in X \mid f(x) \neq 0\}
$$

In particular, $x \notin$ repp $f \Rightarrow f(x)=0$

Example

1) $\operatorname{supp} \lambda=[0,+\infty)$. Notice that $0 \in \operatorname{supp} \lambda$ although $\lambda(0)=0$.
2) If p is as in the above lemma, then supp $p \subset U$.
3) For $f(x)=|x|^{2}-1, f: \mathbb{R}^{4} \rightarrow \mathbb{R}$, supp $f=\mathbb{R}^{n}$.
Deft A (smooth) partion of unity on \mathbb{R}^{n} is a family of smooth functions $\left\{p_{\alpha} \mid \alpha \in A\right\}$ st.
(i) $0 \leq \rho_{\alpha}(x) \leq 1 \quad \forall x \in \mathbb{R}^{n} \quad \forall \alpha \in A$
(ii) For any $x \in \mathbb{R}^{n} \quad \rho_{\alpha}(x) \neq 0$ for finitely many $\alpha \in A$ only.
(iii) $\quad \sum_{\alpha \in A} p_{\alpha}(x)=1 \quad \forall x \in \mathbb{R}^{n}$.

Rem More precisely, (ii) in the above definition should be replaced by the following condition: $\forall x \in \mathbb{R}^{n} \exists$ a ubhd $V \geqslant x$ s.t. the set $\left\{\alpha \in A \mid \operatorname{supp} p_{\alpha} \cap V=\varnothing\right\}$ is finite.
However, we consider mostly finite partitions of unity so that this condition (and
therefore, also (ii)) will be satisfied acetomatically.

Example (A partition of unity on \mathbb{R}^{1}) Consider $\left\{\hat{\rho}_{j}(x) \mid j \in \mathbb{Z}\right\}$, where

$$
\hat{p}_{j}(x)=\psi_{1}(|x-j|)
$$

Notice that

$$
\operatorname{supp} \hat{p}_{j} \subset[j-2, j+2]
$$

Consider

$$
\hat{\rho}(x)=\sum_{j \in \mathbb{R}} \hat{\rho}_{j}(x)
$$

well-detined, smooth and positive everywhere

Therefore

$$
\left\{p_{j}=\hat{p}_{j} / \hat{p} \quad \mid j \in \mathbb{Z}\right\}
$$

is a partition of unity on \mathbb{R}^{1}.
Just like for \mathbb{R}^{n}, the partition of unity is defined for surfaces.
Theorem (Existence of a partition of unity) Let $u=\left\{v_{\alpha} \mid \alpha \in A\right\}$ be any open covering of a surface S. Then \exists a partition of unity $\left\{\rho_{\beta} \mid \beta \in B\right\}$ s.t. $\forall \beta$

$$
\text { supp } \rho_{\beta} \subset U_{\alpha}
$$

for some $\alpha \in A$.
Proof The proof is given for compact surfaces only.
Step 1. Let S be any surface. For any $p \in S$ and any open $W \subset S$, $p \in W$, there exist $\rho \in C^{\infty}(s)$ s.t.
(i) $0 \leqslant p(q) \leqslant 1 \quad \forall q \in S$
(ii) supp $p \subset W$.
(iii) $\exists X \subset W$ open st. $\left.p\right|_{x} \equiv 1$.

Let (U, φ) be a chart on S s.t. $\varphi(p)=0 \in V \subset \mathbb{R}^{2}$ and $v \subset W$.
Pick a function $\hat{p} \in C^{\infty}\left(\mathbb{R}^{2}\right)$ s.t.

$$
0 \leqslant \hat{p} \leqslant 1,\left.\quad \hat{\rho}\right|_{B_{2}(0)} \equiv 1,\left.\quad \hat{p}\right|_{\mathbb{R}^{2} \backslash B_{22}(0)} \equiv 0
$$

for some $r>0$ s.t. $B_{22}(0) \subset V$.
Define

$$
p(p):= \begin{cases}\hat{\rho} \cdot \varphi(p), & p \in U . \\ 0, & p \notin U .\end{cases}
$$

Then P is smooth everywhere and with $X:=\varphi^{-1}\left(B_{2}(0)\right)$ satisfies

Alternatively: One can first define a suitable function \tilde{p} on a ubhd of p in \mathbb{R}^{3} and define p as the restriction of $\tilde{\rho}$ to S.
Rem The function constructed in Step 1 is called a bump function.
Step 2 We prove this thur assuming S is copt Pick any U_{α} and any $\rho \in V_{\alpha}$. Then \exists a chart $\left(U_{p, \alpha}, \varphi_{p, \alpha}\right)$ s.t. $v_{p, \alpha} \subset v_{\alpha}$. By Step 1, $\exists X_{p, \alpha} \subset U_{p, \alpha}$ and a
function $\hat{\rho}_{p, \alpha}$ satisfying (i) -(iii).
Consider the family $\left\{X_{p, \alpha} \mid p \in S, \alpha \in A\right\}$, whicle is an open covering of S. By the compactness of s, \exists a finite subcovering

$$
\begin{array}{ccc}
X_{p_{1}, \alpha_{1}}, \cdots, & X_{p n}, \alpha_{n} \\
!! & & \| \\
X_{1} & & X_{n}
\end{array}
$$

Denote $\hat{\rho}_{j}:=\hat{\rho}_{p_{j}, \alpha_{j}}$ so that $\left.\hat{\rho}_{j}\right|_{x_{j}} \equiv 1$ and consider

$$
\hat{\rho}(p):=\sum_{j=1}^{n} \hat{\rho}_{j}(p)>0 \quad \forall p \in S
$$

Then $\rho_{j}:=\hat{\rho_{j}} / \hat{p}$ is a partition of mitt on S. Moreover,

$$
\text { supp } \rho_{j}=\operatorname{supp} \hat{\rho}_{j} \subset U_{j} \subset U_{\alpha_{j}}
$$

Rem A partition of unity as in the above theorem is called subordinate to M.

Example $S=S^{2}, u=\left\{S^{2} \backslash\{N\}, S^{2} \mid\langle S|\right.$ (8)
Let ρ be a bump function on \mathbb{R}^{2} s.t. $\left.p\right|_{B_{1}(0)} \equiv 1$ and $\operatorname{supp} p \subset B_{2}(0)$.

Define $\quad \rho_{N}:=P \cdot \varphi_{N}$

$$
p_{s}:=1-p_{N}
$$

Then $\left\{p_{N}, \rho_{S}\right\}$ is a partition of unity

Integration on surfaces
Aim: Define a map $\int: C^{\infty}(s) \rightarrow \mathbb{R}$ with "the usual" properties of the integral, egg.
(*) $\int_{S}(\lambda f+\mu g)=\lambda \int_{S} f+\mu \int_{S} g \quad \begin{array}{ll} & \lambda, \mu \in \mathbb{R} \\ f, g \in C^{\infty}(S)\end{array}$
We assume in addition that S is compact.

Chose an atlas $A=\left\{\left(v_{\alpha}, \varphi_{\alpha}\right) \mid \alpha \in A\right\}$ on S. Let $\left\{p_{j} \mid j=1, \ldots, J\right\}$ be a partition of unity on S s.t. $\operatorname{supp} \rho_{j} \subset^{-} U_{\alpha_{j}}=: U_{j}$

For any $f \in C^{\infty}(S)$ we have

$$
f=f \cdot 1=\sum_{j=1}^{I} f \cdot \int_{\substack{u \\ \ddot{p}}}=\sum_{j} f_{j}
$$

and supp $f_{j} c \operatorname{supp}_{j}{ }^{f_{j}} \sigma_{j}$.
Hence, by (8.*) it suffices to define $\int_{s} f_{j}$ theft is we want to define $\int_{s} f$ provided supp $f \subset$ v. $^{\prime}$
where (∇, φ) is a chart.
Viewing φ as an identification between U and $V \subset \mathbb{R}^{2}$, we can identify f with its coordinate representation

$$
F:=f_{0} \varphi^{-1}=f_{0} \Psi: V \rightarrow \mathbb{R} .
$$

Then F vanishes outride of $\varphi^{-1}(\operatorname{supp} F)$, which is copt.

It is tempting to define

$$
\begin{equation*}
\int_{S} f:=\int_{\mathbb{R}^{2}} F(u, v) d u d v . \tag{*}
\end{equation*}
$$

It may happen, however, that there is another chart $(\hat{U}, \hat{\varphi})$ on S s.t.

$$
\text { supp } f c \hat{U}
$$

To show that $\int_{s} f$ is well-defined, we must show the equality

$$
\int_{\mathbb{R}^{2}} F(u, v) d u d v \stackrel{2}{=} \int_{\mathbb{R}^{2}} \hat{F}(x, y) d x d y, \quad(* *)
$$

where $\hat{F}=f \cdot \hat{\varphi}^{-1}$ is the coord. rep. of f with respect to $\hat{\varphi}$.

Let $\theta=\varphi \cdot \hat{\varphi}^{-1} \Leftrightarrow(u, v)=\theta(x, y)$
denote the change of coordinates map. Then

$$
\hat{F}=f \cdot \hat{\varphi}^{-1}=f \cdot \varphi^{-1} \cdot \varphi \cdot \hat{\varphi}^{-1}=F \cdot \theta
$$

so that (**) is equivalent to

$$
\int_{\mathbb{R}^{2}} F(u, v) d u d v \stackrel{?}{=} \quad \int_{\mathbb{R}^{2}} F \cdot \theta(x, y) d x d y
$$

The last equality is false in general, since by a then from analysis

$$
\int_{\mathbb{R}^{2}} F(u, v) d u d v=\int_{\mathbb{R}^{2}} F_{0} \theta(x, y)|\operatorname{det} D \theta| d x d y
$$

Thus, our naive approach to define $\int_{S} f$ by (10.*) is false in general.

To solve this problem, recall the following fact. Suppose $-T \subset \mathbb{R}^{3}$ be a bounded open set such that $S:=\partial V$ is a smooth surface. Then

$$
\int_{V} \operatorname{div} v=\int_{S}\langle v, u\rangle d S
$$

where n is the unit normal field pointing outwards. If $\psi=\Psi(u, v)$ is a parametrizaction of S, the right hand side is defined by

$$
\int\langle v, u\rangle\left|\partial_{u} \psi \times \partial_{s} \psi\right| d u d v
$$

Following this hint, for $f \in C^{\infty}(S)$ with
supp $f \subset V$, where V is a word. chart, we define

$$
\begin{equation*}
\int_{S} f:=\int_{\mathbb{R}^{2}} F(u, v)\left|\partial_{u} \psi \times \partial_{v} \psi\right| d u d v \tag{*}
\end{equation*}
$$

Then, if $(\hat{U}, \hat{\varphi})$ is another chart just like above, we have

$$
\begin{aligned}
& \hat{F}=F \cdot \theta, \quad \theta=\varphi \cdot \hat{\varphi}^{-1}=\psi^{-1} \cdot \hat{\psi} \\
& \hat{\psi}= \psi \cdot \theta \Rightarrow \\
&\left(\partial_{x} \hat{\psi}, \partial_{y} \hat{\psi}\right)=\left(\partial_{u} \psi, \partial_{v} \psi\right) \cdot D \theta \\
& \Rightarrow\left|\partial_{x} \hat{\psi} \times \partial_{y} \hat{\psi}\right|=\left|\partial_{u} \psi \times \partial_{v} \psi\right| \cdot|\operatorname{det} D \theta|
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} \hat{F}(x, y)\left|\partial_{x} \hat{\psi} \times \partial_{y} \hat{\psi}\right| d x d y= \\
& \quad=\int_{\mathbb{R}^{2}} F \cdot \theta(x, y)\left|\partial_{u} \psi \times \partial_{v} \psi\right||\operatorname{det} D \theta| d x d y \\
& \quad=\int_{\mathbb{R}^{2}} F(u, v)\left|\partial_{u} \psi \times \partial_{v} \psi\right| d u d v .
\end{aligned}
$$

That is (12.*) does not depend on the choice of the parametrization of S. Thus, for any $f \in C^{\circ}(S)$ we may set

$$
\begin{aligned}
\int_{S} f: & =\sum_{j} \int_{S} f_{j}= \\
& =\sum_{j} \int_{\mathbb{R}^{2}} F_{j}(u, v)\left|\partial_{u} \psi \times \partial_{s} \psi\right| d u d v
\end{aligned}
$$

Prop $\int_{s} f$ is well-detined, that is $\int_{s} f$ does not depend on the choice of an atlas.
Proof Let $\hat{u}=\left\{\left(\hat{v}_{\beta}, \hat{\varphi}_{\beta}\right) \mid \beta \in B\right\}$ be another atlas on S. Choose a partition of unity $\left\{\begin{array}{l}\left.\mu_{k} \mid k=1, \ldots, k\right\} \\ \text { need to show }\end{array}\right.$ subordinate to \hat{u}. We need to show that

$$
\sum_{j} \int_{S}\left(p_{j} f\right) \stackrel{?}{=} \sum_{k} \int_{S}\left(\mu_{k} f\right)
$$

Notice that $\quad\left\{\lambda_{j k}:=p_{j} \lambda_{k} \mid j=1, \ldots, J, k=1 \ldots k\right\}$ is also a partition of unity and
$\operatorname{supp} \lambda_{j k} c v_{j} \cap \hat{U}_{k}$.
With this understood, consider

$$
\begin{aligned}
\sum_{j=1}^{J} \sum_{k=1}^{K} \int_{S} \lambda_{j k} f & =\sum_{j=1}^{J} \int_{S}\left(\rho_{j} \sum_{k=1}^{K} \mu_{k} f\right) \\
\left(\rho_{j} \mu_{k}\right. & =\sum_{j=1}^{J} \int_{S} \rho_{j} f \\
\sum_{k=1}^{K} \sum_{j=1}^{J} \int_{S}\left(\lambda_{j k} f\right) & \left.=\sum_{k} \int_{S} \mu_{k} \sum_{j=1}^{J} \rho_{j} f\right) \\
& =\sum_{k} \int_{S} \mu_{k} f
\end{aligned}
$$

It follows immediately from the definition that \int_{s} has the usual properties known from the analysis course, for example:

$$
\begin{aligned}
& \cdot \int_{S}(\lambda f+\mu g)=\lambda \int_{S} f+\mu \int_{S} g ; \\
& \cdot f \geqslant 0 \Rightarrow \int_{S} f \geqslant 0 ; \\
& \cdot \int_{S} f=0 \text { and } f \geqslant 0 \Rightarrow f \equiv 0 \\
& \text { and } S \text { on. }
\end{aligned}
$$

Ex Let $f: S^{2} \rightarrow \mathbb{R}$ be any (smooth) function. Let $U=\left\{S^{2} \backslash\{N\}, S^{2} \backslash\{S\}\right\}$ be just as in the example on P.8. Choose $\varepsilon>0$ and set

$$
\begin{aligned}
P_{N}^{\varepsilon}(p): & =p\left(\varepsilon \varphi_{N}(p)\right) \\
\rho_{S}^{\varepsilon}: & =1-p_{N}^{\varepsilon}
\end{aligned}
$$

where p is just as in the example on P. 8 Notice the following:

$$
\begin{array}{ll}
\left.P\right|_{B_{1}(0)} \equiv 1 & \left.\Longrightarrow \quad P_{N}^{\varepsilon}\right|_{\varphi_{N}^{-1}\left(B_{\varepsilon^{-1}}(0)\right)} \equiv 1 \\
\left.\rho\right|_{\mathbb{R}^{2} \mid B_{2}(0)} & \left.\Longrightarrow \quad \rho_{N}^{\varepsilon}\right|_{S^{2} \backslash \varphi_{N}^{-1}\left(B_{2 \varepsilon^{-1}}(0)\right)} \equiv 0
\end{array}
$$

If $F_{N}=f_{0} \psi_{N}$ and $F_{S}:=f-\psi_{S}$ are coordinate representations of f, then by the definition of the integral we have

$$
\begin{aligned}
\int_{S} f= & \int_{\mathbb{R}^{2}}\left(\rho_{N}^{\varepsilon} \circ \psi_{N}(u, v)\right) F_{N}(u, v)\left|\partial_{u} \psi_{N} \times \partial_{v} \Psi_{N}\right| d u d v \\
& +\int_{\mathbb{R}^{2}}\left(\rho_{S}^{\varepsilon} \circ \psi_{S}(u, v)\right) \cdot F_{S}(u, v)\left|\partial_{u} \Psi_{S} \times \partial_{v} \Psi_{s}\right| \text { dud }
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{2}} p(\varepsilon u, \varepsilon v) F_{N}(u, v)\left|\partial_{u} \Psi_{N} \times \partial_{v} \psi_{N}\right| d u d v \\
& +\int_{\mathbb{R}^{2}} \rho_{s}^{\varepsilon} \circ \psi_{s}(u, v) F_{s}(u, v)\left|\partial_{u} \Psi_{s} \times \partial_{v} \Psi_{s}\right| d u d v
\end{aligned}
$$

The last term converges to 0 as $\varepsilon \rightarrow 0$, since - the measure of the supporf of $\rho_{s}^{\varepsilon} \circ \Psi_{s}$ converges to zero;

- the integrand is uniformly bounded with respect to ε.
For the first term, we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} P(\varepsilon u, \varepsilon v) F_{N}(u, v)\left|\partial_{u} \Psi_{N} \times \partial_{v} \Psi_{N}\right| d u d v \\
& =\int_{B_{\varepsilon^{-1}(0)}} F_{N}(u, v)\left|\partial_{u} \Psi_{N} \times \partial_{v} \Psi_{N}\right| d u d v \\
& \quad+\int_{B_{\alpha \varepsilon^{-1}(0)} \backslash B_{\varepsilon^{-1}(0)}} P(\varepsilon u, \varepsilon v) F_{N}(u, v)\left|\partial_{u} \Psi_{N} \times \partial_{N} \Psi_{N}\right| d u d v
\end{aligned}
$$

The last summand of this expression converges to zero, since

- $\left|p(\varepsilon u, \varepsilon v) \quad F_{N}(u, v)\right| \leqslant \sup _{s^{2}}|f|$
- $\int_{B}\left|\partial_{u} \psi \times \delta_{v} \psi\right| d u d v \leqslant \operatorname{Area}\left(S^{2}\right)=4 \pi$.
$B_{2 \varepsilon^{-1}(0)} \backslash B_{\varepsilon^{-1}(0)}$
Summing up, we obtain

$$
\begin{equation*}
\int_{S^{2}} f=\int_{\mathbb{R}^{2}} F_{N}(u, v)\left|\partial_{u} \psi_{N} \times \partial_{v} \Psi_{N}\right| d u d v \tag{*}
\end{equation*}
$$

just as it is well-known from the analysis course.

Of course, a similar argument yields also

$$
\int_{s^{2}} f=\int_{\mathbb{R}^{2}} F_{s}(u, v)\left|\partial_{u} \Psi_{s} \times \partial_{v} \Psi_{s}\right| d u d v .(* *)
$$

The reader should check directly that the right hand sides of (*) and (**) are equal indeed.

Thu Let $h: S_{1} \rightarrow S_{2}$ be a diffeomorphism, where S_{1} and S_{2} are compact surfaces. Then for any $f \in C^{-}(S)$ we have

$$
\begin{equation*}
\int_{S_{2}} f=\int_{S_{1}}(f \cdot h) \cdot|\operatorname{det} d h| \tag{*}
\end{equation*}
$$

To explain the right hand side, let V and W be Euclidean vector spaces such that $\operatorname{dim} V=\operatorname{dim} W=n$. Chose an orthonormal basis $e=\left(e_{1}, \ldots e_{n}\right)$ of V and an orthonormal basis $g=\left(g_{1}, \ldots, g_{n}\right)$ of W. A linear map $\varphi: V \rightarrow W$ can be represented by a matrix $A_{\varphi} \in M_{n}(\mathbb{R})$, where

$$
\begin{aligned}
& \quad A_{\varphi}=\left(a_{i j}\right) \quad \varphi\left(e_{i}\right)=\sum_{j=1}^{n} a_{i j} g_{j} \\
& \Leftrightarrow\left(\varphi\left(e_{1}\right), \ldots, \varphi\left(e_{n}\right)\right)=\left(g_{1},, g_{n}\right) \cdot A \\
& \Leftrightarrow \quad \varphi(e)=g \cdot A
\end{aligned}
$$

If e^{\prime} is another basis of V, then \exists an orthogonal $u \times n$ matrix B s.t.

$$
e^{\prime}=e \cdot B \Leftrightarrow e_{i}^{\prime}=\sum_{j=1}^{n} b_{i j} e_{j}
$$

Similarly, if g^{\prime} is another basis of W,
then there exists an orthogonal $n \times n$ matrix $C=\left(c_{i j}\right)$ sit.

$$
g^{\prime}=g C \quad \Longleftrightarrow \quad g_{i}^{\prime}=\sum_{j=1}^{n} c_{i j} g_{j}
$$

Let A_{φ}^{\prime} be the matrix of φ with respect to e^{\prime} and g^{\prime}. Then

$$
\begin{gathered}
\varphi\left(e^{\prime}\right)=g^{\prime} A_{\varphi}^{\prime}=g C A_{\varphi}^{\prime} \\
\varphi(e \cdot B)=\varphi(e) \cdot B=g \cdot A_{\varphi} B \\
\\
\Rightarrow C A_{\varphi}^{\prime}=A_{\varphi} B \Rightarrow A_{\varphi}^{\prime}=C^{-1} A_{\varphi} B
\end{gathered}
$$

Therefore

$$
\operatorname{det} A_{\varphi}^{\prime}=\operatorname{det}\left(C^{-1}\right) \operatorname{det} A_{\varphi} \operatorname{det} B
$$

$$
\pm 1 \text { since } B \text { and } C
$$

$$
\begin{aligned}
& = \pm \operatorname{det} A_{\varphi} \\
\Rightarrow\left|\operatorname{det} A_{\varphi}^{\prime}\right| & =\left|\operatorname{det} A_{\varphi}\right|
\end{aligned}
$$

are orthogonal

That is for any linear map $\varphi: V \rightarrow W$ between Euclidean spaces $|\operatorname{det} \varphi|:=\left|\operatorname{det} A_{\varphi}\right|$ is well-defined.

Since for any $p \in S_{1}$ both $T_{p} S_{1}$ and $T_{h(p)} S_{2}$ are Euclidean, (detdh/ is a well-defined function on S_{1}.
Proof of the theorem
Let $u_{2}=\left\{\left(U_{\alpha}, \varphi_{\alpha}\right) \mid \alpha \in A\right\}$ be an atlas on S_{2}. Pick a partition of unity $\left\{p_{j} \mid j=1, \ldots, n\right\}$ on S_{2} subordinate to u_{2}. Then $u_{1}=\left\{\left(h^{-1}\left(v_{\alpha}\right), \varphi_{\alpha} . h\right) \mid \alpha \in A\right\}$ ξ_{α}
is an atlas on S_{1} and $\left\{p_{j} \cdot h \mid j=1, \ldots, h\right\}$ is a partition of unity subordinate to U_{1}.
If $\operatorname{supp} P_{j} \subset U_{\alpha_{j}}=: U_{j}$, denote $\psi_{j}=\varphi_{j}^{-1}$

$$
\begin{aligned}
& \xi_{j}=\varphi_{\alpha_{j}} \cdot h \text { and } \nu_{j}=\xi_{j}^{-1}=h^{-1} \cdot \psi_{j} \\
& \Leftrightarrow \psi_{j}=h \circ \nu_{j} \Rightarrow \partial_{u} \psi_{j}=d h\left(\partial_{u} \nu_{j}\right) \\
& \partial_{v} \psi_{j}=d h\left(\partial_{v} \nu_{j}\right) \\
& \Longrightarrow\left|\partial_{u} \psi_{j} \times \partial_{v} \psi_{j}\right|=|\operatorname{det} d h|\left|\partial_{u} \nu_{j} \times \partial_{v} \nu_{j}\right|
\end{aligned}
$$

follows from: $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ linear \Longrightarrow $(A v) \times(A w)=(\operatorname{det} A) \cdot V \times w$

$$
\begin{aligned}
& \int_{S_{1}}\left(p_{j} \circ h\right) \cdot(f \circ h) \cdot|\operatorname{det} d h|= \\
& =\int_{\mathbb{R}^{2}}^{1}(\underbrace{\rho \circ h_{0} j_{j}^{-1}}_{\psi_{j}}) \cdot(\underbrace{f \circ h_{\circ} \xi_{j}^{-1}}_{\psi_{j}}) \cdot \underbrace{|\operatorname{det} d h| \cdot\left|\partial_{u} \nu_{j} \times \partial_{v} \nu_{j}\right|}_{\left|\partial_{u} \psi_{j} \times \partial_{v} \psi_{j}\right|} \\
& =\int_{\mathbb{R}^{2}}\left(\rho_{j} \circ \psi_{j}\right) \cdot\left(f \circ \psi_{j}\right)\left|\partial_{u} \psi_{j} \times \partial_{\sigma} \psi_{j}\right| \\
& =\int_{S_{2}} p_{j} \cdot f
\end{aligned}
$$

Sumwing up by j, we obtain (15. *)

Rem Notice that (15.*) is nothing else but a fancy restatement of the theorem about the change of coordinates for the integration, which is well-known from the analysis course.

