
oformson surfaces &

Let S be a surface.

Pef A Riemannian metric on 5 is a

family of scalar products (ip on each

tangent space TS, PCS, such thatP

So, depends smoothly on p

To explain, let 4: F -be a

parametrization. If ge' and p=4(9), them

TS has a basis (Ou4, 004). Hence, the

scalar product C.ob is represented by its
Gram matrix

M = (*)
E = [0u4,0273
F= <024, 884.
G = C804, 0043

We say, feattuneddepends smoothlyor resthe

Con it, where they are defined)

Ex Foraresults
we havetossaSince

scalar product
<x, 34st==x131 + x232+x3 y2



we can restrict 1. 1st to TS to O2
obtain a scalar product on ToS. This is

a Riemannian matria on 8, since

E

Cu.w) = [84, 04s = (on4,Ou4st
is a smooth function of (u.v) (and similarly
for F and 6)
This particular Riemannian metic on S

is called the first fundamental form of S

in the classin
-

not surfaces.

#ercise Let (i) be the first fundamental

form of 5 and f:S ->S be a

differworphism. For v,we TpS define

a new scalar product
<v,W9=== <dpt(v), dptCurLLECpL

TelS TEcpsS
show that it is a Riemannian

metric on 5.



For the sake of simplicity of exposition.B
assume S is oriented and let u be

the unit normal field. We can view n

as a smooth
map

I: S -> Sh

which is called themap. There
Up CS we have

dph:Tp5 ->Tux S"= ncph=75.
this is calledmeoperator.
As a linear

map
in a 2-dimensional

vector space, the shape operator has
two invariants:

*det(dpu) and H (p) = = -z tr (dpn)

Ref K(p) is called the Gauss curvature

and H(p) is called the mean curvature

of 5 at
Po

K. H are smooth functions on 5.

#1 S= R=Rx40T<R
Gacess map UCp = (P) constant

Shape operator du = o



=>K = 0.
⑭

2

E2 62: = 3XER 1 N= 223
Gauss map RCPC = tP
The shape operator: dom ( = EU=dpi=2id
=>K(p) = Tr is constant on 54

If <-> 0, K(p) ->0 and the sphere
looks more and more flat in a ubid of

each point (that is why our Earth is "flat")

Thus, we can view the Gauss curvature

as a measure of flatness of 5.

Lemma the shape operator is symmetrican

<du (v), w) = v, dpucus)

ApCS and Vrwe TpS.

Roof Let 4: F-S be a parametrization
sot. 4(0) = p.

Then (8u4,0r4 (law) =0 B

a basis of T S. Hence, it suffices to
P

show the equality
>dom (On4), 004) = (824, dpuCort)), (4)

where the derivatives are evaluated at the origin.



To this end, notice that by the definition*
of a we have

& n<4(0,01), Out (e.v1) = 0 far) eF

Differentiating this equality with respect to o
and setting (4,0) =0, we obtain

& dph (Ou4),804) + (((p), Our 4) = 0

Similarly, we obtain

& Out,dpe (804)L +<804, MCPLL = 0

subtracting these two equalities, we arrive

at (4.X). *

Ref The bilinear symmetric map
I: ToS x TpS -R

Cr, w) -<V,douCWRp
is called hefundamentalform of S

sat the point pC.
Notice that I is smooth, that is
for

any parametrization
#

(94 (4,0), Ou4lu,rt), ICOut, 0047,
#

1804, 0.4



are smooth functions of (,0) ⑤

Bene One can recover the shape operator-

From the second fundamental form, that
is these two objects contain the same

ammount of information.

Imeaningoftheignore
Let pes be a critical pt of FeCO(S).
Given ve TpS, pick j:(-3,a) - 5 s.t.

W(0) = p and Y(p) = V.

Let The
map

Hessp7: TS -> R, Hers,f(x) =(z- (FoU()
is called the Hessian of 7 at p.

Prop
(i) Hesspf is a well-defined quadratic map;
(ii) If p is a pt of loc. minimum, then

Hessp(f) (v) > O OveTpS. If p is

a pt of loc. maximum, then Hesspf (v) I0.

(iii) If Hess 7 (V) 30 Urto, then
p is a pt of loc. minimum. If

Hesspf (V) <0 Urto, then p is a pe



of 80c maximum. &

Roof
Choose a parametrization 4 S.t. 40(=p

and devote

F= = fo t
B= = 408 = 408.

O =>> R=>
r
↑ -F
↳

#I

There if PCL = (p,C), Pult), we have

Fo5S = Fob (t) = F (pilt), Pult) (
=>of Foult) = OuF (pht)) p, Ct> + 0F(ph)) BIC)
Notice that $10 = 0 and OuF10 = 0 = 0F(0)

.

Furthermore we have

diffoUlt) = wF10Bico" + 28mF10 pilospilo (*)
+OvF(0) BiCo)"



Recalling that $0 = dpPCU), we see ⑧

that the right-hand-side of (E.A) depends only
on ) and not on the choice of 5.

Moreover, (E.*) also shows that Hessof (v)
is a quadratic form of V.

In fact we have shown that Hess,f

corresponds to the Herrian of the Los

representation F of 8 in the following
sense: The diagram
TS tless f
P P-
↓de #

->R Hess F
ep)

commutes. That is we can identify Hesspf
with Hessecs F by means of the isomorphism
dp4: ToS ->R? This immediately implies
(ii) and (iii). A



Let aR be any fixed rector, a to.B
Let ha: S+R be the restriction of

R" -> R, Xo> <x,).

The he is called the height function
on 5 in the direction of a

Notice that p is a critical pt of ha
it and only if ToS a

Ex For a = (0,0,1) we have the standard

height function

⑧

①.. .
⑧

Prop Let n be an orientation of 5. Then

any p.
S we have

I=
- Hess (hucpi



Pret observe first that ⑧

Tps 1- wcp) that is p is a critical

pt of hucps .

Given VE Tps choose a curve y : C- E. E) → S

s
-
t

. ✗G) =p
and jco ) = V. There

Hessp (Kuip , ) = £:/
⇔
( Jct ) , help ) )

= { jco )
, help ) )

However
, JH ) c- S ⇒ jet) c- Ty( + , S ft

⇒ < jct)
,
next)) ) = 0

ft

±
at /⇐ ☐

< FG )
, help )) -1

< 86 ) , dpu ( jam)>⇒
11

Ip(v )
This yields Ip (v ) = - < jco ) , ncp ))

= - Hessp @ ucp , ) ☒

Fix
pe
S

.

Without loss of generality
assume that

p = 0 C- 1123 and Uco ) = (0,0 , 1) .

This can be always achieved by applying



a translation and a
rotation in 143 4

Since the shape operator don: ToS+TS
his e

is symmetric, dow has two

real eigenvalues, say K, and 2

Consider the following cases:

#)kp(30 => Kk>o-

Hess (hucos) is either positive - definite or

negative definite

EL
B) </p> <o => z/ S

attains both

positive
and negatethe

#La.eFire
arents in a
any

ubled of
4

above and below ToS.



④Rein If Kcp ) =0
,
in general one

cannot say anything about the position
of s relative to Tps .

Surfaces of positive curvature and

thecaeess-B.cn#-theoreue-
Let s be a smooth connected surface

.

The ( Jordan separation thin )
If s is closed as a subset of Rs

,
then

112315 has exactly two connected components
,

whose common boundary is S
. ☒

Reg The Jordan separation theorem is a

well - known result from topology .

Its proof
requires certain results from topology ,

which

are typically not proved in a standard course

in topology .

Hence
,
we take the Jordan

separation thin as granted .

An interested
reader may find a proof in the book

of Montiel - Ros ( Thin
.
4.16 ) .

If S is compact ,

then one and only one

component of Rs IS is bounded
.

This bounded

open
domain is calledtheiuuerdomaiuofs.TKunbounded domain is called theouterdo-m.is.



Coc Any compact surface in Rs ④

is orientable
.

Prost Let Sc Rs be a compact surface .

Without loss of generality we can assume

that S is connected ( otherwise
, pick a

connected component of s) .

Pick a pt pe S .

A unit vector u
,

which is normal at p , is said
to be pointing

outwards
,

if 7 Eso

s.t.ptthe Rout t t c- (o , e)
.

outer domain of S
.

_
Pick a ubhd W ot

p
in R

'

and a

smooth function 4 : W → R s
.
-1

.



SAW = 4-
'

(o ) and 746) to thew
.

④

Exercise show that 4 / • innw
< ° and

✗ /%+nw >
° ( or the other

way
around )

.

In other words
,

Rin AW = { 4<0 } and Rout nw={ 4>03
,

which we assume for the sake of definiteness
.

Since

44ft Tap)) = Icp ) -11044s ) it + oct )
'

> 0

¥ To

provided t > o is sufficiently small
,

we obtain

that
74 (p )

Epl
is pointing outwards for any pe

snw
.

A similar argument shows that
_

TIP'

is pointing inwards
.

109ps /

Let Ñ be
any other open subset of 1123 and

I c- C-Civ ) S.t.

S nÑ = G- '

6)
,

☐ § (x) =/ o theÑ
,

Rin nÑ = { 5<0} and Shout nÑ=h4 > o }
.



Then T ⊕is necessarily pointing
108431

inwards
.

In particular ,

TÑ
105¢ , ,

= ttpewnñrns .

1094031
That is

¥⇔
Mcp ] /

if PE SAW ,

wcp ) : = { ☐ ÑCP> if pe
snÑ

,

Fips
is well-defined and smooth on Sncwuiu )

.

✓
snñ

snw

Since we can cover all of S by such subsets
,

he is a well - defined unit normal field

pointing outwards
. ☒.



Cor Let s be a crupt surface with
⑯

-

positive Gauss curvature. If n is the unit

normal field pointing outwards, then the
second fundamental form of 5 with respect
to u is positive - definite.
Proof Pick pes and consider the height
-

function hup. This has a local maximum

I

~
at
p, hence

tesshup=-#p<0(> [p> 0.4

Prop Let ScR" be a crupt connected surf.
--

If K(p(s0 Upe), then tin is convex,
that is

x, ye Rin =>(x,y] c Rin
I

the
segment in RP connecting Xandy.

In particular, in is also convex and

x,y=5 => Jx,y[ <kin.



⑦Proof
-

Assume 52=52 .in is not convex
.
Consider

A : = { (× ,y ) c- 52×52 / [× , y ] a R } .

Notice that

• A =/∅
,
since (xx) c- A V- ✗ c- R

• A ≠ ☐ xD
,

since otherwise R were convex
.

Then the topological boundary 9A of ACAR
is non - empty .

This means the following :

7
sequences Xu

, Yu ,
Xi

, yi c- 52 S
-

t
.

Xu
,

✗I → ✗ c- R
, yn.gl → yes

[ ✗ n , yn ] a R and [xi
, yi ] ¢52

Exercise show that F z c- [×
, y] nor

"

s
S.t. V : = y

- × c- Tzs
.

This yields : [× , y ] C Tzs .



Let a be a unit normal vector at ⑱
z pointing outwards (locally, so that a
ubled of zin S is located below the tangent

plane). Then less he 10 so that
z

he has a strict toc, max at z.

Furthermore, can assume z = 0, n
=(0,0, 1), and v = (1,0,0)

S = 3(u,0, 7(0))3 in a ubled of the origin.

Consider the curve V:( - 3,3) -> S

U(t) = (t,0,f(t,0)).
Since UCt) lies above (t.o.0), we must have

f(t,0) 50 and f(0,0) = 0. Hence
3

t = 0 must be a pt of loc. min. For

t2 f(t.0). This is impossible, because

kno8:trt f(t,o

must have a strict Coc.max, at t = 0. A

ofthe exercise in the p
Since <Xy.]K1, there exists
z =tuxn +p-tn)y2 for some tuto,1].

By the compactness of 10.1], there



there exists a subsec. tun converging ⑲
to some te (0.1]. In fact, to (0.1) since
the endpoint of [x.y] belong to & by
construction.

Furthermore, any neighbourhood
of z: = tx + (1-tly contains pts from

I

2the complement of 1, for example -

mm

for a sufficiently large. However, any ubled

of a contains also points from it, for

example Em: = tun Xin + (-tmn) You

provided m is sufficiently large. Hence,
zc0r =5.

Assume v*TS. Then
any

ubled of z

in [x.y] would contain pts both from th
and RPR. Indeed, if S is given by
the equation 4 (p) =0 in a ubled of

z,
then Up TIS (F) LUY(z),v) F0

=>Y(z + tv) =Y(t) + t(8Y(z),v) + o(tY)
11 #

O

=>I takes both positive and negative values
ou [z-ev,z+50]. This is impossible,
since otherwise [Xm, You] cannot be
contained in t



⑲
Prop Let s be a surface with

positive Gauss curvature. The affine tangent
plane

intersectsas
= [p+ v/vetpS}
at

p only.
↑roof Assume 9

cTs rs,gp-

=) ]p,glc Rin by the Prop. on 4.16.

However, the positivity of the Gauss curvature

implies that all pts in a ubled of pin

Ths lie in out. This is a contradiction



the Let s be a compact connected
surface. If K(p>10 Upes, then
the Gauss map

of S

n: S -> Sh

is a diffeomorphism.
↑

ooon the Gauss
map

is a local differ.

&(p): = det(dpu) +0 =>

don is an iso i m is a loc. differ

by the inverse function them.

*2 The Gauss map
is subjective.

S is crupt n(s)cs" is upt

=x(S) is closed, since 5"is Hansdorff

Also, uCS) is clearly non-empty.

Step 1-n(s) is open => n(s) = 53

since 5" is connected.

#eps The Gauss
map

is injective.



Given ne s
'

consider the height function④

Hn : Siu → R

✗ → < vi. ×>

Notice that Hu /☒
in = ,

= ʰⁿ
'

'

Notice that any pt of loc
.

max
.

of Hu must

be on 052in -_ S ,
since ☐ Hu -1-0 at

any
interior pt of Bin

.

Assume the has two distinct pts of loc
.

maxima
.
Denote these pts by p

and
g.

Can assume

Hucp ) ≥ Hu (g) .

case-1.HN (p) > Hu (g)
Then we have

Hnctp + 4-↳ g) = ttlncp > + C- t )Hu(g)

> tHn(g) + @-t) Hu (g) = Hncq )

For t → 0
,

t > o we have

Pt :=ᵗp + e- t) g-> g
and Hncpt) > Hncq ) .

Thus
, g cannot be a pt of loc .

max
.
forth

.



*
2.Hu(p) = He(q) ⑫

<=)(m,p - q) =0

=> p
-

qc TS
Vtc R

E pttCc-gLE
TB
g = p. Contradiction.

The's shows that He has at most one
-

loc. maximum on tin. Since thin is crupt,
such of west exist, so that the has a

unique put of loc. maximum p, which lies on S.

Then ↑is also a unique put of loc. max.

for him, that is a unique solution of

u(g) =n.

Thees, Step 2: Step 3 #7 the inverse to

the Gauss map

step 1 => this
map

is smooth H

any compact surfaceollaryLet s
b

are curvature K. Then

Sk =4π.



230Proot

§ K = f 1kt = f. ldetcdul
s ↑ S

K > 0 Deth of K

= § 1 = Area (5) = 41T

52

Part 3. Thin on P.es Et

Ree It turns out that only our proof
requires K > 0

,
however for any

S

diffeomorphicto S2 we have

§ K = 41T
.

S

Even more generally , let g denote the

niuenber of " holes" of S ;

8=0 8=1 g=z
- - -



④Then we have

§k=4g✓
for

any crept surface
.

This is the

celebrated Gauss - Bonnet three
.


