Quadratic forms on surfaces
Let S be a surface.
Def A Riemannian metric on S is a family of scalar products $\langle\cdot, \cdot\rangle_{p}$ on each tangent space $T_{p} S, p \in S$, such that $\langle\cdot, \cdot\rangle_{p}$ depends smoothly on p.
To explain, let $\psi: V \rightarrow{ }^{-} v$ be a parametrization. If $q \in-V$ and $p=\psi(q)$, then $T_{p} S$ has a basis $\left(\partial_{u} \psi, \partial_{v} \psi\right)$. Hence, the scalar prodect $\langle\cdot, \cdot\rangle_{p}$ is represented by its Gram matrix

$$
M=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right) \quad \begin{aligned}
& E=\left\langle\partial_{u} \psi_{1} \partial_{u} \psi\right\rangle_{p} \\
& F
\end{aligned} \quad\left\langle\left\langle\partial_{u} \psi, \partial_{v} \psi\right\rangle_{p}, \begin{array}{l}
G \\
G
\end{array}\right.
$$

We say, that $\langle\cdot, \cdot\rangle_{p}$ depends smoothly on p, if all 3 functions E, F, G are smooth (on U, where they are defined).
Ex For any $p \in S$ we have $T_{p} S \subset \mathbb{R}^{3}$. Since \mathbb{R}^{3} is equipped with the standard scalar product

$$
\langle x, y\rangle_{s t}:=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

we can restrict $\langle\cdot,\rangle_{s t}$ to $T_{p} S$ to obtain a scalar product on $T_{P} S$. This is a Riemannian metric on S, since

$$
E(u, v)=\left\langle\partial_{u} \psi, \partial_{u} \psi\right\rangle_{s}=\left\langle\partial_{u} \psi, \partial_{u} \psi\right\rangle_{s t}
$$

is a smooth function of (u, v) (and similarly for F and G).
This particular Riemannian metric on S is called the first fundamental form of S in the classical theory of surfaces.
Exercise Let $\langle\cdot, \cdot\rangle$ be the first fundamental form of S and $f: S \rightarrow S$ be a diffeomorphism. For $v, w \in T_{p} S$ define a new scalar product

$$
\begin{array}{r}
\langle v, w\rangle_{f}:=\left\langle\begin{array}{c}
d_{p} f(v), \\
\left.d_{p} f(w)\right\rangle_{f(p)} \\
T_{f(p)} S
\end{array} T_{f(p)} S\right.
\end{array}
$$

Show that $\langle\cdot,\rangle_{f}$ is a Riemannian metric on S.

For the sake of simplicity of exposition, assume S is oriented and let n be the unit normal field. We can view n as a smooth map

$$
n: S \rightarrow S^{2}
$$

which is called the Gauss map. Thun $\forall p \in S$ we have

$$
d_{p} n: T_{p} S \rightarrow T_{n(p)} S^{2}=n(p)^{\perp}=T_{p} S
$$

This is called the shape operator.
As a linear map in a 2 -dimensional vector space, the shape operator has two invariants:

$$
K(p):=\operatorname{det}\left(d_{p} u\right) \quad \text { and } \quad H(p):=-\frac{1}{2} \operatorname{tr}\left(d_{p} n\right)
$$

Def $K(p)$ is called the Gauss curvature and $H(p)$ is called the mean curvature of S at p.
K, H are smooth functions on S.
Ex 1 $S=\mathbb{R}^{2} \equiv \mathbb{R}^{2} \times\{0\} \subset \mathbb{R}^{3}$.
Garess map $\quad h(p)=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ constant
Shape operator $d_{p} u \equiv 0$

$$
\Rightarrow \quad K \equiv 0
$$

Ex $2 \quad S_{r}^{2}:=\left\{\left.x \in \mathbb{R}^{3} \quad|\quad| x\right|^{2}=2^{2}\right\}$
Gauss map $n(p)=\frac{1}{2} p$
The shape operator: $d_{p} n(v)=\frac{1}{2} V \Rightarrow d_{p} n=\frac{1}{2}$ id
$\Rightarrow K(p)=\frac{1}{r^{2}}$ is constant on S^{2}
If $r \rightarrow \infty, K(p) \longrightarrow 0$ and the sphere looks more and wore flat in a ubhd of each point (that is why our Earth is "flat").
Thus, we can view the Gauss curvature as a measure of flatness of S.

Lemma The shape operator is symmetric, that is

$$
\left\langle d_{p} u(v), w\right\rangle=\left\langle v, d_{p} u(w)\right\rangle
$$

$\forall p \in S$ and $\forall v, w \in T_{p} S$.
Proof Let $\psi: V \rightarrow S$ be a parametrization st. $\psi(0)=p$. Then $\left.\left(\partial_{u} \psi, \partial_{s} \psi\right)\right|_{(u, v)=0}$ is a basis of $T_{p} S$. Hence, it suffices to show the equality

$$
\begin{equation*}
\left\langle d_{p} u\left(\partial_{u} \psi\right), \partial_{v} \psi\right\rangle=\left\langle\partial_{u} \psi, d_{p u} u\left(\partial_{v} \psi\right)\right\rangle \tag{*}
\end{equation*}
$$

where the derivatives are evaluated at the origin.

To this end, notice that by the definition of u we have

$$
\left\langle n(\psi(u, v)), \partial_{u} \psi(u, v)\right\rangle=0 \quad \forall(u, v) \in V
$$

Differentiating this equality with respect to v and setting $(u, v)=0$, we obtain

$$
\left\langle d_{p} u\left(\partial_{u} \psi\right), \partial_{v} \psi\right\rangle+\left\langle u(p), \partial_{u v} \psi\right\rangle=0
$$

Similarly, we obtain

$$
\left\langle\partial_{u} \psi, d_{p} n\left(\partial_{v} \psi\right)\right\rangle+\left\langle\partial_{u v} \psi, n(p)\right\rangle=0
$$

Subtracting these two equalities, we arrive at (4.*).
Def The bilinear symmetric map

$$
\begin{aligned}
I I: T_{p} S \times T_{p} S & \longrightarrow \mathbb{R} \\
(v, w) & \longmapsto\left\langle v, d_{p} u(w)\right\rangle_{p}
\end{aligned}
$$

is called the second fundamental form of S (at the point p).
Notice that II is smooth, that is for any parametrization ψ

$$
\begin{aligned}
& \mathbb{I}\left(\partial_{u} \psi(u, v), \partial_{u} \psi(u, v)\right), \mathbb{\mathbb { }}\left(\partial_{u} \psi, \partial_{v} \psi\right) \\
& \mathbb{I}\left(\partial_{v} \psi, \partial_{v} \psi\right)
\end{aligned}
$$

are smooth functions of (u, v).
Rem One can recover the shape operator from the second fundamental form, that is these two objects contain the same ammount of information.

The geometric meaning of the sign of the Gauss curvature.
Let $p \in S$ be a critical $p t$ of $f \in C^{\infty}(S)$. Given $v \in T_{p} S$, pick $\gamma:(-\varepsilon, \varepsilon) \rightarrow S$ sit. $\gamma(0)=p$ and $\dot{\gamma}(p)=v$.
Def The map
$\operatorname{Hess}_{p} f: T_{p} S \rightarrow \mathbb{R}, \quad \operatorname{Hess}_{p} f(v)=\left.\frac{d}{d t}\right|_{t=0}(f \circ \gamma(t))$ is called the Hessian of f at p.
Prop
(i) Hess f is a well-defined quadratic map;
(ii) If p is a $p t$ of loci minimuen, then Hess $_{p}(f)(v) \geqslant 0 \quad \forall v \in T_{p} S$. If p is a $p t$ of loc.maximum, then Hess $f(v) \leq 0$.
(iii) If Hess $f(v)>0 \quad \forall v \neq 0$, then p is a pt of lock. minimueve. If Hess $f(v)<0 \quad \forall v \neq 0$, then p is a $p t$
of los. maximum.
Proof
Choose a parametrization ψ s.t. $\psi(0)=p$ and denote

$$
F:=f 0 \psi \quad \beta:=\varphi \cdot \gamma=\psi^{-1} \circ \gamma
$$

Then if $\beta(t)=\left(\beta_{1}(t), \beta_{2}(t)\right)$, we have

$$
\begin{aligned}
& f_{0} \gamma(t)=F \circ \beta(t)=F\left(\beta_{1}(t), \beta_{2}(t)\right) \\
\Rightarrow & \frac{d}{d t} f \circ \gamma(t)=\partial_{u} F(\beta(t)) \beta_{1}^{\prime}(t)+\partial_{v} F(\beta(t)) \beta_{2}^{\prime}(t)
\end{aligned}
$$

Notice that $\beta(0)=0$ and $\partial_{u} F(0)=0=\partial_{0} F(0)$.
Furthermore we have

$$
\begin{gather*}
\left.\frac{d^{2}}{d t^{2}}\right|_{t=0} f_{0} \gamma(t)=\partial_{u u}^{2} F(0) \beta_{1}^{\prime}(0)^{2}+2 \partial_{u v}^{2} F(0) \beta_{1}^{\prime}(0) \beta_{2}^{\prime}(0) \tag{*}\\
\\
+\partial_{v v}^{2} F(0) \beta_{2}^{\prime}(0)^{2}
\end{gather*}
$$

Recalling that $\beta^{\prime}(0)=d_{p} \varphi(v)$, we see
that the right-hand-side of (7.*) depends only on $\beta^{\prime}(0)$ and not on the choice of γ.
Moreover, (7.*) also shows that Hess f (v) is a quadratic form of v.
In fact we have shown that Hess f corresponds to the Hessian of the los. representation F of f in the following sense: The diagram
commenter. That is we can identify Hess f with Hess wp) F by means of the isomorphism $d_{p} \varphi: T_{p} S^{\varphi(p)} \rightarrow \mathbb{R}^{2}$. This immediately implies
(ii) and (iii).

Let $a \in \mathbb{R}^{3}$ be any fixed vector, $a \neq 0$.
Let $h_{a}: S \rightarrow \mathbb{R}$ be the restriction of

$$
\mathbb{R}^{3} \rightarrow \mathbb{R}, \quad x \longmapsto \quad\langle x, a\rangle
$$

Then h_{a} is called the height function on S in the direction of a.
Notice that p is a critical pt of h_{a} if and only if $T_{p} S \perp a$.

Ex For $a=(0,0,1)$ we have the standard height function

Prop Let n be an orientation of S. Then for any $p \in S$ we have

$$
\mathbb{I}_{p}=-\operatorname{Hess}_{p}\left(h_{n(p)}\right)
$$

Proof Observe first that
$T_{p} S \perp u(p)$ that is p is a critical pt of $h_{n(p)}$.
Given $v \in T_{T} S$ choose a curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow S$ s.t. $\gamma(0)=p$ and $\dot{\gamma}(0)=v$. Then

$$
\begin{aligned}
& \operatorname{Hess}_{p}\left(h_{u(p)}\right)=\left.\frac{d^{2}}{d t^{2}}\right|_{t=0}\langle\gamma(t), u(p)\rangle \\
& =\langle\ddot{\gamma}(0), n(p)\rangle
\end{aligned}
$$

However, $\gamma(t) \in S \Rightarrow \dot{\gamma}(t) \in T_{\gamma(t)} S \quad \forall t$

$$
\begin{gathered}
\Rightarrow\langle\dot{\gamma}(t), n(\gamma(t))\rangle=0 \quad \forall t \\
\left.\frac{d}{d t}\right|_{t=0}\langle\ddot{\gamma}(0), n(p)\rangle+\left\langle\dot{\gamma}(0), d_{p} n(\dot{\gamma}(0))\right\rangle=0 \\
\mathbb{I}_{p}(v)
\end{gathered}
$$

This yields $\quad \mathbb{I}_{p}(v)=-\langle\ddot{\gamma}(0), n(p)\rangle$

$$
=- \text { Hess }_{p}\left(h_{n c_{p}}\right)
$$

Fix $p \in S$. Without loss of generality assume that

$$
p=0 \in \mathbb{R}^{3} \quad \text { and } \quad n(0)=(0,0,1)
$$

This can be always achieved by applying
a translation and a rotation in \mathbb{R}^{3}. Since the shape operator $d_{0} n: T_{0} S \rightarrow T_{0} S$ is symmetric, dou has two $\stackrel{\|}{\mathbb{R}^{2}} \quad \mathbb{R}^{2}$ real eigenvalues, say k_{1} and k_{2}.
Consider the following cases:
A) $K(p)>0 \Rightarrow k_{1} \cdot k_{2}>0 \Rightarrow$ Hess ${ }_{0}\left(h_{n(0)}\right)$ is either poritive-detinite or negative definite

B) $K(p)<\left.0 \Rightarrow z\right|_{S}$
attains both poritive and negative values

$$
\Downarrow
$$

In any ubhd of p there are pts in S above and below $T_{p} S$.

Rem If $K(p)=0$, in general one cannot say anything about the position of S relative to $T_{p} S$.

Surfaces ot positive curvature and
the Gauss-Bonnet theorem
Let S be a smooth connected surface.
Thun (Jordan separation the)
If S is closed as a subset of \mathbb{R}^{3}, then $\mathbb{R}^{3} \backslash S$ has exactly two connected components, whore common boundary is S.
Rem The Jordan separation theorem is a well-knowh result from topology. Its proof requires certain results from topology, which are typically not proved in a standard course in topology. Hence, we take the Jordan separation thur as granted. An interested reader may find a proof in the book of Montiel-Ros (Thin. 4.16).
If S is compact, then one and only one component of $\mathbb{R}^{3} \backslash S$ is bounded. This bounded open domain is called the inner domain of S. The unbounded domain is called the outer dom. of .

Corollary Any compact surface in \mathbb{R}^{3} is orientable.

Proof Let $S \subset \mathbb{R}^{3}$ be a compact surface. Without loss of generality we can assume that S is connected (otherwise, pick a connected component of S).
Pick a $p t p \in S$. A unit vector n, which is normal at P, is said to be pointing outwards, if $\exists \varepsilon>0$ s.t.

$$
p+t h \in \Omega_{\text {out }} \quad \forall t \in(0, \varepsilon) \text {. }
$$

outer domain of S.

Pick a ublid W ot P in \mathbb{R}^{3} and a smooth function $\varphi: W \rightarrow \mathbb{R}$ sit.

$$
\begin{equation*}
S \cap W=\varphi^{-1}(0) \quad \text { and } \quad \nabla \varphi(x) \neq 0 \quad \forall x \in W \tag{14}
\end{equation*}
$$

Exercise Show that $\left.\varphi\right|_{\Omega_{\text {in }} n w}<0$ and $\left.\varphi\right|_{\Omega_{\text {out }} \cap W}>0$ (or the other way around). In other words,

$$
\Omega_{\text {in }} \cap W=\{\varphi<0\} \text { and } \Omega_{\text {out }} \cap W=\{\varphi>0\} \text {. }
$$

which we assume for the sake of definitness.
Since
provided $\quad t>0$ is sufficiently small, we obtain that

$$
\frac{\nabla \varphi(p)}{|\nabla \varphi(p)|}
$$

is pointing outwards for any $p \in S \cap W$. A similar argument shows that $-\frac{\nabla \varphi(p)}{|\nabla \varphi(p)|}$ is pointing inwards.
Let \hat{W} be any other open subset of \mathbb{R}^{3} and $\hat{\varphi} \in C^{-\infty}(\hat{w})$ st.

$$
\begin{array}{ll}
S \cap \hat{W}=\hat{\varphi}^{-1}(0), & \nabla \hat{\varphi}(x) \neq 0 \quad \forall x \in \hat{W}, \\
\Omega_{\text {in }} \cap \hat{W}=\{\hat{\varphi}<0\} & \text { and } \Omega_{\text {out }} \cap \hat{W}=\{\varphi>0\} .
\end{array}
$$

Then $\quad \frac{\nabla \hat{\varphi}(p)}{|\nabla \hat{\varphi}(p)|} \quad$ is necessarily pointing
inwards. In particular,

$$
\frac{\nabla \hat{\varphi}(p)}{|\nabla \hat{\varphi}(p)|}=\frac{\nabla \varphi(p)}{|\nabla \varphi(p)|} \quad \forall p \in W \cap \hat{w} \cap S .
$$

That is

$$
w(p):=\left\{\begin{array}{cl}
\frac{\nabla \varphi(p)}{|\nabla \varphi(p)|} & \text { if } p \in S \cap W, \\
\frac{\nabla \hat{\varphi}(p)}{|\nabla \hat{\varphi}(p)|} & \text { if } p \in S \cap \hat{W},
\end{array}\right.
$$

is well-detined and smooth on $S \cap(w \cup \hat{w})$.

Since we can cover all of S by such subsets, n is a well-defined unit normal field pointing outwards.

Cor Let S be a copt surface with positive Gauss curvature. If n is the mit normal field pointing outwards, then the second fundamental form of S with respect to n is positive-definite.
$\frac{\text { Proof Pick }}{\text { Pr }} p \in S$ and consider the height function $h_{n(p)}$. This has a local maximum

at p, hence

$$
\text { Hess } h_{n(p)}=-\mathbb{I}_{p}<0 \Leftrightarrow \mathbb{I}_{p}>0
$$

Prop Let $S \subset \mathbb{R}^{3}$ be a copt connected surf. If $K(p)>0 \quad \forall p \in S$, then $\Omega_{\text {in }}$ is convex, that is

$$
x, y \in \Omega_{\text {in }} \Rightarrow[x, y] \subset \Omega_{\text {in }}
$$

the segment in \mathbb{R}^{3} connecting x and y.
In particular, $\bar{Q}_{\text {in }}$ is also convex and

$$
x, y \in S \Rightarrow \quad] x, y\left[<\Omega_{\text {in }}\right.
$$

Proof Assume $\Omega=\Omega_{\text {in }}$ is not convex. Consider

$$
A:=\{(x, y) \in \Omega \times \Omega \mid \quad[x, y]<\Omega\}
$$

Notice that

- $A \neq \phi$, since $(x, x) \in A \quad \forall x \in \Omega$
- $A \neq \Omega \times \Omega$, since otherwise Ω were convex.

Then the topological boundary ∂A of $A \subset \Omega \times \Omega$ is non-empty. This means the following:
\exists sequences $x_{n}, y_{n}, x_{n}^{\prime}, y_{n}^{\prime} \in \Omega$ s.t.

$$
x_{n}, x_{n}^{\prime} \rightarrow x \in \Omega, y_{n}, y_{n}^{\prime} \rightarrow y \in S
$$

$\left[x_{n}, y_{n}\right] \subset \Omega$ and $\left[x_{n}^{\prime}, y_{n}^{\prime}\right] \notin S$
Exercise Show that $\exists z \in[x, y] \cap \frac{\partial \Omega}{11}$ s.t. $\quad V:=y-x \in T_{z} S$.

This yields: $[x, y] \subset T_{z} S$.

Let n be a unit normal vector at z pointing outwards (locally, so that a ubhd of z in S is located below the tangent plane). Then Hess $h_{n}<0$ so that h_{n} has a strict loci. max. at z.

Furthermore, can assume $z=0, n=(0,0,1)$, and $v=(1,0,0)$. $S=\{(u, v, f(u, v))\}$ in a ubhd of the origin.

Consider the curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow S$

$$
\gamma(t)=(t, 0, \quad f(t, 0))
$$

Since $\gamma(t)$ lies above $(t, 0,0)$, we must have $f(t, 0) \geqslant 0$ and $f(0,0)=0$. Hence, $t=0$ must be a pt of lock. min. For $t \longmapsto f(t, 0)$. This is impossible, because

$$
h_{n} \cdot \gamma: t \longmapsto f(t, 0)
$$

must have a strict lon max. at $t=0$.

Solution of the exercise in the pf
Since $\left[x_{n}^{\prime}, y_{n}^{\prime}\right] \notin \Omega$, there exists $z_{n}^{\prime}=t_{n} x_{n}^{\prime}+\left(1-t_{n}\right) y_{n}^{\prime} \notin \Omega$ for some $t_{n} \in[0,1]$. By the compactness of $[0,1]$, there
there exists a subseg. $t_{n_{m}}$ converging to some $t \in[0,1]$. In fact, $t \in(0,1)$ since the endpoint of $[x, y]$ belong to Q by construction.

Furthermore, any neighbourhood of $z:=t x+(1-t) y$ contains pts from the complement of Ω, for example $z_{n_{m}}^{\prime}$ for m sufficiently large. However, any ubhd of z contains also points from Ω, for example $z_{n_{m}}:=t_{n_{m}} x_{n_{m}}+\left(1-t_{n_{m}}\right) y_{n_{m}}$ provided m is sufficiently large. Hence, $z \in \partial \Omega=S$.

Assume $v \notin T_{z} S$. Then any ubhd of z in $[x, y]$ would wntain pts both from Ω and $\mathbb{R}^{3} \backslash \Omega$. Indeed, if S is given by the equation $\varphi(p)^{\prime}=0$ in a ubhd of z, then $v \notin T_{z} S \Leftrightarrow\langle\nabla \varphi(z), v\rangle \neq 0$

$$
\Rightarrow \varphi(z+t v)=\underset{\sim}{\|} \underset{0}{\varphi(z)}+t\langle\nabla \varphi(z), v\rangle+o\left(t^{2}\right)
$$

$\Rightarrow \varphi$ takes both positive and negative values on $[z-\varepsilon v, z+\varepsilon v]$. This is impossible, since otherwise $\left[x_{n_{m}}, y_{n m}\right]$ cannot be contained in Ω.

Prop Let S be a surface with positive Gauss curvature. The affine tangent plane

$$
T_{p}^{a} S=\left\{p+v \mid v \in T_{p} S\right\}
$$

intersects S at P only.
Proof Assume $q \in T_{p}^{a} S \cap S, q \neq p$. $\Rightarrow \quad] p, q\left[\in \Omega_{\text {in }}\right.$ by the Prop. on P. 16. However, the positivity of the Gauss curvature implies that all pts in a nbhd of p in $T_{p}^{a} S$ lie in $\Omega_{\text {out }}$. This is a contradiction 四

Thur Let S be a compact connected surface. If $K(p)>0 \quad \forall p \in S$, then the Gauss map of S

$$
n: S \rightarrow s^{2}
$$

is a diffeomorphism.
Proof
Step 1 The Gauss map is a local differ.

$$
K(p):=\operatorname{det}\left(d_{p} u\right) \neq 0 \Rightarrow
$$

$d_{p} h$ is an iso $\Rightarrow n$ is a loci. differ by the inverse function thu.
Step 2 The Gauss map is surjective.
S is copt $\Rightarrow h(S) \subset S^{2}$ is copt
$\Rightarrow h(S)$ is closed, since S^{2} is Hausdorff
Also, $n(S)$ is clearly non-empty.
Step $1 \Rightarrow n(S)$ is open $\Rightarrow n(S)=S^{2}$ since S^{2} is connected.
Step 3 The Gauss map is infective.

Given $n \in S^{2}$ consider the height function

$$
\begin{aligned}
H_{n}: \bar{\Omega}_{\text {in }} & \longrightarrow \mathbb{R} \\
x & \longmapsto\langle n, x\rangle
\end{aligned}
$$

Notice that $\left.H_{n}\right|_{\partial \bar{\Omega}_{i n}=S}=h_{n}$.
Notice that any pt of loc.max. of H_{n} must be on $\partial \bar{\Omega}_{\text {in }}=S$, since $\nabla H_{n} \neq 0$ at any interior pt of $\bar{\Omega}_{\text {in }}$.
Assmene H_{n} has two distinct pts of loo. maxima. Denote these pts by p and q. Can assume

$$
H_{n}(p) \geqslant H_{n}(q)
$$

Case 1. $H_{n}(p)>H_{n}(q)$
Then we have

$$
\begin{array}{r}
H_{n}(t p+(1-t) q)=t H_{n}(p)+(1-t) H_{n}(q) \\
>t H_{n}(q)+(1-t) H_{n}(q)=H_{n}(q)
\end{array}
$$

For $t \rightarrow 0, t>0$ we have
$p_{t}:=t p+(1-t) g \rightarrow q$ and $H_{n}\left(p_{t}\right)>H_{n}(q)$.
Thus, q cannot be a pt of los. max. for H_{n}.

Case 2. $H_{n}(p)=H_{n}(q)$

$$
\begin{aligned}
& \langle\langle n, p-q\rangle=0 \\
& \Rightarrow p-q \in T_{p} S \\
& \Rightarrow p+t(p-q) \in T_{p}^{a} S \\
& \Rightarrow q \in-1 \quad \forall t \in \mathbb{R} \\
& \Rightarrow T_{p}^{a} S \Rightarrow p=p . \quad \text { Contradiction. }
\end{aligned}
$$

This shows that H_{n} has at most one log. maximum on $\bar{\Omega}_{\text {in }}$. Since $\bar{\Omega}_{\text {in }}$ is curt, such pt must exist, so that H_{n} has a unique pt of lock. maximum p, which lies on S. Then p is also a unique pt of los. max. for h_{n}, that is a unique solution of

$$
n(g)=n
$$

Thus, Step $2+$ step $3 \Rightarrow$ F he inverse to the Gauss map
Step $1 \Rightarrow$ this map is smooth.
Corollary Let S be any compact surface with positive Gauss curvature K. Then

$$
\int_{S} K=4 \pi
$$

Proof

$$
\begin{aligned}
\int_{S} k & =\int_{S}|k|=\int_{S}|\operatorname{det}(d u)| \\
& =\operatorname{Defu}_{S} \text { of } k \\
= & 1=\operatorname{Area}\left(S^{2}\right)=4 \pi
\end{aligned}
$$

Part 3, Thu on P. 15
Rem It turns out that only our proof requires $K>0$, however for any S differmorphic to S^{2} we have

$$
\int_{S} k=4 \pi
$$

Even more generally, let g denote the number of "holes" of S :

Then we have

$$
\int_{S} K=4 \pi(1-g)
$$

for any copt surface. This is the celebrated Gauss -Bonnet thu e.

