
Differential Geometry I

0.1 Vector fields and their integral curves
Definition 1. A smooth map v : M → TM such that

π ◦ v = idM ⇐⇒ v(m) ∈ TmM

is called a (smooth) vector field on M .

For example, the map

v : S1 → R2, v(x) =
(
x, (−x1, x0)

)
is a (smooth) vector field on S1. Since the first component of v must be x by the very definition
of a vector field, usually one simply writes

v(x) = (−x1, x0). (2)

Denote
X(M) :=

{
v : M → TM is a vector field

}
.

Clearly, X(M) is a real vector space with respect to the following operations:

•
(
v1 + v2

)
(m) := v1(m) + v2(m), where v1, v2 ∈ X(M);

•
(
λv
)
(m) = λv(m), where v ∈ X(M) and λ ∈ R.

In fact, any vector field can be multiplied by any smooth function:(
f · v

)
(m) = f(m)v(m), where v ∈ X(M) and f ∈ C∞(M).

We summarize this in the following.

Proposition 3. The set X(M) of all vector fields on M has the structure of a module over
C∞(M) with respect to the pointwise addition and multiplication. �

Example 4. Consider M = Rk. We have seen that TRk ∼= Rk × Rk and that the natural
projection equals π1. Hence, a vector field is a map of the form

v(x) =
(
x, y(x)

)
,

where y ∈ C∞(Rk;Rk). Hence, we can identify X(Rk) with C∞(Rk;Rk) via the map

v =
(
idRk , y

)
7→ y.

More formally, this map is an isomorphism of C∞(M)-modules.

Generalizing the above example slightly, pick a chart (U,ϕ) on a manifold M . Since

vϕ(m) :=
(
[γm1 ], . . . , [γmk ]

)
, where γmj (t) := ϕ−1

(
ϕ(m) + tej

)
,

is a basis of TmM , we can find the coordinates
(
y1(m), . . . , yk(m)

)
of v(m) with respect to this

basis. In other words, y : U → Rk is a map such that

v(m) = vϕ(m) · y(m)

holds at any point m ∈ U . Notice that the map y is well defined even if v is not necessarily
smooth. This map is called the coordinate (or local) representation of v with respect to the
chart (U,ϕ).
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Proposition 5. The map v : M → TM satisfying π ◦ v = idM is a smooth vector field if an only
if for each chart (U,ϕ) as above the coordinate representation y of v is smooth.

Proof. Recall that for any chart (U,ϕ) on M as above we constructed a chart
(
π−1(U), τ−1ϕ

)
on TM . Just by the definitions of τϕ and y, for the coordinate representation of v with respect
to these charts we have

τ−1ϕ
◦ v ◦ ϕ−1 =

(
x, y ◦ ϕ−1(x)

)
.

Hence, v is smooth if and only if y is smooth. �

Thus, locally over each chart U vector fields can be identified with smooth vector-valued
maps just as in Example 4. It turns out, however, that in general no such identification can exist.

Let γ : (a, b)→ M be a smooth curve. At any point t ∈ (a, b) we define the tangent vector
γ̇(t) ∈ Tγ(t)M to γ by

γ̇(t) :=
[
s 7→ γt(s)

]
where γt(s) := γ(t+ s).

Definition 6 (Integral curves). A (smooth) curve γ is called an integral curve of a vector field
v if

γ̇(t) = v
(
γ(t)

)
holds for any t ∈ (a, b).

Example 7. Consider the curve γ : R→ S1, γ(t) = (cos t, sin t). We have γ̇(t) = (− sin t, cos t).
Furthermore, if v is given by (2), then

v ◦ γ (t) = (− sin t, cos t).

Hence, γ is an integral curve of (2).

Let us consider integral curves on Rk in some detail. Thus, represent a vector field v ∈
X(Rk) by a smooth map y : Rk → Rk just as in Example 4 above. A map γ : (a, b)→ Rk is an
integral curve of v if and only if

γ̇(t) = y
(
γ(t)

)
⇐⇒


γ̇1(t) = y1

(
γ1(t), . . . , γk(t)

)
,

· · · · · · · · ·
γ̇k(t) = yk

(
γ1(t), . . . , γk(t)

)
,

(8)

holds for any t ∈ (a, b). In other words, an integral curve of a vector field is a solution of a
system of ordinary differential equations (ODEs). Notice that the map y does not depend on t,
that is (8) is an autonomous system of ODEs.

Conversely, any system of ODEs as above, is uniquely specified by a map y ∈ C∞(Rk;Rk).
In view of Example 4, y corresponds to a vector field v, whose integral curves are solutions of
the initial system of ODEs. Thus, at least for Euclidean spaces, integral curves of vector fields
and solutions of autonomous systems of ODEs are synonymous.

Exercise 9. Show that if γ is a C1-curve satisfying (8), then γ is smooth.

Notice that for autonomous systems we have the following property: If γ is a solution of (8)
such that γ(t0) = m0, then for any c ∈ (a, b)

γc(t) := γ(t+ c), t ∈ (a− c, b− c)
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is also a solution. In other words, the integral curve γ1 of v such that γ1(t1) = m0 satisfies

γ1(t) = γ
(
t+ t0 − t1

)
,

that is γ1 differs from γ just by a shift of time. For this reason, one often chooses t0 = 0 as the
initial time for integral curves of vector fields.

By the main theorem of ODEs [Hal80, Sec.I.3], we obtain the following existence and
uniqueness result.

Theorem 10. Let v be a smooth vector field on an open subset Ω ⊂ Rk. For any point m0 ∈ Ω
there exists a neighbourhood V ⊂ Ω of m0 and a number ε > 0 with the following property:
For any m ∈ V there exists an integral curve

γ = γm : (−ε, ε)→ Ω such that γ(0) = m.

This integral curve is unique in the following sense: If β : (−δ, δ) → M is any other integral
curve such that β(0) = m, then β and γm coincide on (−ε, ε) ∩ (−δ, δ). Moreover, the map

Φ: (−ε, ε)× V → Rk, Φ(t,m) := γm(t) (11)

is smooth. �

Definition 12. An integral curve γ : (a, b) → M of a vector field v is called maximal, if the
following property holds: For any other integral curve β : (c, d) → M of v such that for some
t0 ∈ (a, b) ∩ (c, d) we have γ(t0) = β(t0), then:

(i) (c, d) ⊂ (a, b);

(ii) β = γ
∣∣
(c,d)

.

It is a well-known fact from the theory of ODEs, that for any m0 ∈ Rk there is a unique
maximal solution of (8) through m0. A straightforward corollary is, that for any vector field v
on any manifold M there is a unique maximal integral curve γ of v through a given point.

Corollary 13. If M is compact, then a maximal integral curve of any vector field is defined on
all of R.

Proof. For each point m ∈ M pick a chart (U,ϕ) containing m. Hence, we obtain the
coordinate representation of the vector field v via the map y : Ω := ϕ(U) → Rk. Then
γ : (a, b)→ U is an integral curve of v if and only if for Γ := ϕ ◦ γ we have

Γ̇(t) = y
(
Γ(t)

)
for t ∈ (a, b),

cf. (8). By Theorem 10, there exists a neighborhood Vm such that for each m̂ ∈ Vm the integral
curve γm̂ through m̂ is defined on (−εm, εm). By the compactness of M , we can find a finite
collection of points {m1, . . . ,m`} such that the corresponding collection of neighbourhoods{
Vj := Vmj

| 1 ≤ j ≤ `
}

covers all of M . Set

ε :=
min{εmj

| 1 ≤ j ≤ ` }
2

> 0.
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Let γ : (a, b) → M be a maximal integral curve of v. Assuming b < ∞, the point m0 :=
γ(b− ε) lies in some Vj . By the construction of ε, there is a unique integral curve γm0 , which is
well-defined on (−2ε, 2ε) and satisfies γm0(0) = m0. Set

γ̂ : (a, b+ ε)→M, γ̂(t) =

{
γ(t) for t ∈ (a, b− ε),
γm0

(
t− b+ ε

)
for t ∈

[
b− ε, b+ ε

)
.

Notice that γ̂ is continuous since γm0(b− ε) = m0 = γ(b− ε). In fact, by construction γ̂ is an
integral curve of v on (a, b− ε)∪ (b− ε, b+ ε). It follows that γ̂ is a C1-integral curve of v and
therefore smooth by Exercise 9. Thus, γ̂ is an integral curve of v defined on a larger interval.
This contradicts the maximality of γ. �

0.2 Flows and 1-parameter groups of diffeomorphisms
In this section I assume that M is a compact manifold.

For a vector field v define the flow of v to be the map

Φ: R×M →M, Φ(t,m) = γm(t).

Of course, this is just the map Φ of Theorem 10 extended to the whole real line. Sometimes,
(11) is referred to as the local flow of v.

Beside the flow, for each fixed t ∈ R it is also convenient to consider

Φt : M →M, Φt(m) = Φ(t,m) = γm(t).

Proposition 14. The following holds:

(i) Each Φt is a diffeomorphism. Moreover, Φ−1t = Φ−t;

(ii) For any t, s ∈ R we have Φt ◦ Φs = Φt+s = Φs ◦ Φt;

(iii) Φ0 = idM ;

Proof. For m ∈M and t ∈ R denote Φt(m) = m̂. This means that γm(t) = m̂, where γm is an
integral curve of v such that γm(0) = m.

Consider the curve β defined by β(s) = γm(s + t). Then β is an integral curve of v and
β(0) = γm(t) = m̂, that is β = γm̂. Hence,

Φs(m̂) = γm̂(s) = β(s) = γm(s+ t) = Φs+t(m) ⇐⇒ Φs ◦ Φt = Φs+t.

Since (iii) holds by the very definition of Φt, by (ii) we obtain

Φ−t ◦ Φt = idM = Φt ◦ Φ−t.

In particular, each Φt is a diffeomorphism and Φ−1t = Φ−t �

Definition 15. A 1-parameter group of diffeomorphisms is any smooth map Φ: R×M → M
such that Properties (i)–(iii) of Proposition 14 hold.

To explain the above definition, notice that the set

Diff(M) :=
{
f : M →M | f is a diffeomorphism

}
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is a group with respect to the composition operation. Diff(M) is called the diffeomorphism
group ofM . With this understood, a 1-parameter group of diffeomorphisms is simply a homomorphism
of groups

R→ Diff(M), t 7→ Φt

such that Φt(m) = Φ(t,m) depends smoothly on (t,m).
Thus, Proposition 14 states that each vector field on a compact manifold generates a 1-

parameter group of diffeomorphisms. Conversely, it turns out that any 1-parameter group of
diffeomorphisms generates a vector field in the following sense.

Proposition 16. For any 1-parameter group of diffeomorphisms Φ there exists a vector field v,
whose 1-parameter group of diffeomorphisms coincides with Φ.

Proof. For any m ∈M denote

γm : R→M, γm(t) := Φ(t,m) and v(m) := γ̇m(0).

The reader should check that v is a smooth vector field.
Furthermore, denote γm(t) = m̂ and observe that

γm̂(s) = Φs(m̂) = Φs

(
Φt(m)

)
= Φt+s(m) = γm(t+ s). (17)

In other words, if at : R→ R is defined by at(s) = t+ s, then γm̂ = γm ◦ at. Hence,

v
(
γm(t)

)
= v
(
m̂
)

= γ̇m̂(0) = [γm̂(s)]s=0 = [γm(t+ s)]s=0 = γ̇m(t),

where the first three equalities follow straight from corresponding definitions and the fours one
follows from (17). Thus, γm is the integral curve of v. Therefore, the 1-parameter group of
diffeomorphisms generated by v is

(t,m) 7→ γm(t) = Φ(t,m),

In other words, the 1-parameter group of diffeomorphisms generated by v coincides with Φ. �

To sum up, for compact manifolds there is a natural bijective correspondence between vector
fields and 1-parameter groups of diffeomorphisms.
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