Assignment 10

MATH-F310: Differential Geometry I

December 12, 2022

1. $S U(2):=U(2) \cap S L(2, \mathbb{C})$, i.e., unitary 2×2 matrices with determinant one. Now show that the $\operatorname{map} f: S^{3} \subset \mathbb{C}^{2} \rightarrow S U(2)$,

$$
f(\alpha, \beta)=\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right)
$$

is a homeomorphism $(\alpha, \beta \in \mathbb{C})$. And hence we can construct charts on $S U(2)$ to prove that it's a smooth manifold of dimension 3 .
2. Define a function $f: S^{2} \rightarrow \mathbb{R}$ by $f(x, y, z)=x^{2}+2 y+z+2$. Compute the differential of f at the point $(0,1,0)$. Try to compute all the critical points of f.
3. Smooth Urysohn Theorem: If A and B are disjoint, closed subsets of a smooth manifold X, Prove that there is a smooth function f on X, such that $0 \leq f \leq 1$ with $f=0$ on A and $f=1$ on B. [Hint: partition of unity.]
4. Morse function on a manifold: Suppose that a point $x \in \mathbb{R}^{k}$, is a nondegenerate critical point of a function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$. We define the matrix

$$
\left(h_{i j}\right)=\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)\right)
$$

to be the Hessian of f at x. If the Hessian is non-singular at the critical point a, one says a is a nondegerate critical point of f. The concept of nongeneracy makes sense on manifolds, via local parametrizations. Suppose that $f: X \rightarrow \mathbb{R}$ has a critical point at $x \in X$ and that ϕ is a local parametrization carrying the origin to x. Then 0 is a critical point for the function $f \circ \phi$, for $d_{0}(f \circ \phi)=d_{x} f \circ d \phi_{0}$. We shall declare x to be nondegerate for f if 0 is nondegenerate for $f \circ \phi$. The difficulty with such local definitions is that one must always prove the cloice of parametrization to be unimportant. In this case, if ϕ_{1} and ϕ_{2} are two choices, then $f \circ \phi_{1}=\left(f \circ \phi_{2}\right) \circ \psi$, where $\psi=\phi_{2}^{-1} \circ \phi_{1}$. Now prove that:
a. Suppose that f is a function on \mathbb{R}^{k} with a nondegenerate critical point at 0 , and ψ is a diffeomorphism with $\psi(0)=0$. Then $f \circ \psi$ is also a nondegenerate critical point at 0 . Observe that this result makes the nondegenerate points on a manifold well-defined. A function is Morse if all the critical points are nondegerate.
b. Suppose that $f=\sum_{i, j} a_{i j} x_{i} x_{j}$ in \mathbb{R}^{k}. Check that its Hessian matrix is $H=\left(a_{i j}\right)$. Considering \mathbb{R}^{k} as the vector space of column vectors, H operates as a linear map by left multiplication, as usual. Show that if $H v=0$, then f is critical all along the line through v and 0 . Thus the origin is an isolated critical point iff H is non-singular.
c. Show that the height function $h:\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto x_{4}$ on the sphere S^{3} is a Morse function with two critical points, the poles. Note that one pole is a maximum and the other a minimum.

