Assignment 10

MATH-F310: Differential Geometry I

December 12, 2022

1. $SU(2) := U(2) \cap SL(2, \mathbb{C})$, i.e., unitary 2 × 2 matrices with determinant one. Now show that the map $f : S^3 \subset \mathbb{C}^2 \to SU(2)$,

$$f(\alpha,\beta) = \begin{pmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix}$$

is a homeomorphism $(\alpha, \beta \in \mathbb{C})$. And hence we can construct charts on SU(2) to prove that it's a smooth manifold of dimension 3.

- 2. Define a function $f: S^2 \to \mathbb{R}$ by $f(x, y, z) = x^2 + 2y + z + 2$. Compute the differential of f at the point (0, 1, 0). Try to compute all the critical points of f.
- 3. Smooth Urysohn Theorem: If A and B are disjoint, closed subsets of a smooth manifold X, Prove that there is a smooth function f on X, such that $0 \le f \le 1$ with f = 0 on A and f = 1 on B. [Hint: partition of unity.]
- Morse function on a manifold: Suppose that a point x ∈ ℝ^k, is a nondegenerate critical point of a function f : ℝ^k → ℝ. We define the matrix

$$(h_{ij}) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right)$$

to be the Hessian of f at x. If the Hessian is non-singular at the critical point a, one says a is a *nondegerate* critical point of f. The concept of nongeneracy makes sense on manifolds, via local parametrizations. Suppose that $f : X \to \mathbb{R}$ has a critical point at $x \in X$ and that ϕ is a local parametrization carrying the origin to x. Then 0 is a critical point for the function $f \circ \phi$, for $d_0(f \circ \phi) = d_x f \circ d\phi_0$. We shall declare x to be *nondegerate* for f if 0 is nondegenerate for $f \circ \phi$. The difficulty with such local definitions is that one must always prove the cloice of parametrization to be unimportant. In this case, if ϕ_1 and ϕ_2 are two choices, then $f \circ \phi_1 = (f \circ \phi_2) \circ \psi$, where $\psi = \phi_2^{-1} \circ \phi_1$. Now prove that:

a. Suppose that f is a function on \mathbb{R}^k with a nondegenerate critical point at 0, and ψ is a diffeomorphism with $\psi(0) = 0$. Then $f \circ \psi$ is also a nondegenerate critical point at 0. Observe that this result makes the nondegenerate points on a manifold well-defined. A function is *Morse* if all the critical points are nondegerate.

b. Suppose that $f = \sum_{i,j} a_{ij} x_i x_j$ in \mathbb{R}^k . Check that its Hessian matrix is $H = (a_{ij})$. Considering \mathbb{R}^k as the vector space of column vectors, H operates as a linear map by left multiplication, as usual. Show that if Hv = 0, then f is critical all along the line through v and 0. Thus the origin is an isolated critical point iff H is non-singular.

c. Show that the height function $h: (x_1, x_2, x_3, x_4) \mapsto x_4$ on the sphere S^3 is a Morse function with two critical points, the poles. Note that one pole is a maximum and the other a minimum.