Assignment 1

MATH-F310: Differential Geometry I

September 29, 2022

- 1. Let $a, b, c \in \mathbb{R}$ be such that $ac b^2 > 0$. Show that the maximum and minimum values of the function $g(x_1, x_2) = x_1^2 + x_2^2$ on the ellipsoid $ax_1^2 + 2bx_1x_2 + cx_2^2 = 1$ are of the form $\frac{1}{\lambda_1}$ and $\frac{1}{\lambda_2}$ where λ_1 and λ_2 are eigenvalues of the matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$.
- 2. For what values of c, $f^{-1}(c)$ is a surface in \mathbb{R}^3 ? (a) $f(x, y, z) = x^2 + y^2 + z^2$ (b) f(x, y, z) = xyz
- 3. Let *C* be the circle of radius *r* in the *YZ*-plane centerted at the point (0, a, 0), where a > r. And we obtain *T* by rotating *C* around the *X*-axis. More formally

$$T := \{(\sqrt{x^2 + y^2} - a)^2 + z^2 = r^2\}$$

Show that *T* is indeed a surface.

- 4. Show that $\{(x, y, z) \in \mathbb{R}^3 | y^2 = x^3\}$ is not a surface in \mathbb{R}^3 .
- 5. Show that the maximum and the minimum values of the function $g(x_1, \ldots, x_{n+1}) = \sum_{i,j=1}^{n+1} a_{ij} x_i x_j$ on the unit *n*-sphere $x_1^2 + \cdots + x_{n+1}^2 = 1$, where (a_{ij}) is a symmetric $n \times n$ matrix of real numbers, are eigenvalues of the matrix (a_{ij}) .