Assignment 1

MATH-F310: Differential Geometry I

September 29, 2022

1. Let $a, b, c \in \mathbb{R}$ be such that $a c-b^{2}>0$. Show that the maximum and minimum values of the function $g\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$ on the ellipsoid $a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}=1$ are of the form $\frac{1}{\lambda_{1}}$ and $\frac{1}{\lambda_{2}}$ where λ_{1} and λ_{2} are eigenvalues of the matrix $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$.
2. For what values of $c, f^{-1}(c)$ is a surface in \mathbb{R}^{3} ?
(a) $f(x, y, z)=x^{2}+y^{2}+z^{2}$
(b) $f(x, y, z)=x y z$
3. Let C be the circle of radius r in the $Y Z$-plane centerted at the point $(0, a, 0)$, where $a>r$. And we obtain T by rotating C around the X-axis. More formally

$$
T:=\left\{\left(\sqrt{x^{2}+y^{2}}-a\right)^{2}+z^{2}=r^{2}\right\}
$$

Show that T is indeed a surface.
4. Show that $\left\{(x, y, z) \in \mathbb{R}^{3} \mid y^{2}=x^{3}\right\}$ is not a surface in \mathbb{R}^{3}.
5. Show that the maximum and the minimum values of the function $g\left(x_{1}, \ldots, x_{n+1}\right)=\sum_{i, j=1}^{n+1} a_{i j} x_{i} x_{j}$ on the unit n-sphere $x_{1}^{2}+\cdots+x_{n+1}^{2}=1$, where $\left(a_{i j}\right)$ is a symmetric $n \times n$ matrix of real numbers, are eigenvalues of the matrix $\left(a_{i j}\right)$.

