Assignment 6

MATH-F310: Differential Geometry I

November 4, 2022

1. Suppose that a surface S is a union $S=S_{1} \cup S_{2}$ where S_{1} and S_{2} are two orientable surfaces such that $S_{1} \cap S_{2}$ is connected. Prove that S is also orientable.
2. Möbius band: Define a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by

$$
f(u, v)=\left(\left(2-v \sin \frac{u}{2}\right) \sin u,\left(2-v \sin \frac{u}{2}\right) \cos u, v \cos \frac{u}{2}\right)
$$

Show that the image of f (Möbius band) is a surface in \mathbb{R}^{3}.
3. Show that any tangent plane to $z=x^{2}-y^{2}$ intersects the surface in two perpendicular lines.
4. Let $f: S_{1} \rightarrow S_{2}$ be a local diffeomorphism between two surfaces S_{1} and S_{2} with S_{2} orientable. Let N_{2} be a unit normal field on S_{2}. We define a map $N_{1}: S_{1} \rightarrow \mathbb{R}^{3}$ as follows: if $p \in S_{1}$, we put

$$
N_{1}(p)=\frac{a \times b}{|a \times b|}
$$

where a, b form a basis of $T_{p} S_{1}$ satisfying

$$
\operatorname{det}\left(\left(D f_{p}\right)(a),\left(D f_{p}\right)(b), N_{2}(f(p))\right)>0
$$

Show that N_{1} is a unit normal field on S_{1} and consequently S_{1} is also orientable.
5. Show that if a surface S in \mathbb{R}^{3} is represented both as $f^{-1}(c)$ and $g^{-1}(d)$ where $\nabla f(p) \neq 0, \nabla g(p) \neq$ $0 \forall p \in S$, then $\forall p \in S, \nabla f(p)=\lambda(p) \nabla g(p)$ for some $\lambda(p) \neq 0$.

