Assignment 7

MATH-F310: Differential Geometry I

November 24, 2022

1. Compute the Gauss curvature of the hyperboloid $x^{2}+y^{2}-z^{2}=1$ at the point $(1,0,0)$.
2. Compute the Gauss map, the shape operator and the Gauss curvature for the cylinder $\left\{(x, y, z) \mid x^{2}+y^{2}=\right.$ $\left.r^{2}\right\} \subset \mathbb{R}^{3}$.
3. Let S be a compact connected oriented surface in \mathbb{R}^{3}. Prove that the Gauss map maps S onto the unit sphere S^{2}.
4. Show that an orientable connected surface whose Gauss and mean curvatures are identically zero must be an open subset of a plane.
5. Let $f=f(x, y)$ be a smooth function on \mathbb{R}^{2}, and let $S \subset \mathbb{R}^{3}$ be its graph. Suppose that

$$
f(0)=\frac{\partial f}{\partial x}(0)=\frac{\partial f}{\partial y}(0)=0
$$

We denote the Hessian matrix of f by: $\left(\begin{array}{cc}\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\ \frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}\end{array}\right)$. Show that the Gauss curvature of S at $(0,0,0)$ is $\frac{1}{4}$ times the determinant of the Hessian matrix of f at the origin.

