Assignment 9

MATH-F310: Differential Geometry I

December 8, 2022

Preimage Theorem: If n is a regular value of some $f \in C^{\infty}(M, N)$ such that $f^{-1}(n) \neq \emptyset$, then $f^{-1}(n)$ is a smooth manifold of dimension $k := \dim M - \dim N$.

- 1. Assume the statement of the preimage theorem, now prove that at a point $m \in f^{-1}(n), T_m(f^{-1}(n)) = \ker d_m f$.
- 2. Let $f: S^3 \to \mathbb{R}$ be the function $f(x_1, x_2, x_3, x_4) = x_1^2 + x_2^2$. Show that $\frac{1}{2}$ is a regular value of f. Deduce that $f^{-1}(\frac{1}{2})$ is a submanifold of S^3 and show that this submanifold is diffeomorphic to the torus $S^1 \times S^1$.
- 3. This exercise is to prove that the orthogonal group $O(n) := \{A \in M(n) | AA^t = I\}$ is a smooth manifold and compute its dimension.

a. Use exercise 1 from assignment 1 and use the fact that both the spaces:

M(n): the space of all $n \times n$ real valued matrices S(n): the space of all symmetric matrices inside M(n)

are vector spaces of dimension n^2 and $\frac{n(n+1)}{2}$ respectively. And hence the tangent space at any point of these can be canonically identified with the vector space itself.

b. Now define a map $f : M(n) \to S(n)$ by $f(A) = AA^t$, show that f is smooth and notice that $O(n) = f^{-1}(I)$. Now prove that I is indeed a regular value of f. So, O(n) is a smooth manifold of dimension $n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$.

c. Now prove that $T_I(O(n))$ is the set of $n \times n$ skew symmetric matrices (with or without using exercise 1).

4. a. One can define ℝP² := S²/~, where (x, y, z) ~ (-x, -y, -z). Show that ℝP² is a smooth manifold.
b. Define a map f : S² → ℝ⁴, by

$$f(x, y, z) := (xy, xz, y^2 - z^2, 2yz)$$

Show that it's smooth. Moreover prove that it induces a smooth map $\tilde{f} : \mathbb{RP}^2 \to \mathbb{R}^4$.

c. Prove that the differential of \tilde{f} is injective at all points of \mathbb{RP}^2 .