Part B

In this part choose one answer from the list provided. You do not need to provide a solution or justification.
Estimated time required: 20 min.
Problem 6 (2P). The set $S:=\left\{(x, y, z) \in \mathbb{R}^{2} \mid z^{4}=x^{4}+y^{4}\right\} \ldots$
[] is a smooth surface.
[] is not a smooth surface, since S is disconnected.
[] is not a smooth surface, since S is not homeomorphic to \mathbb{R}^{2}.
[x] is not a smooth surface, since S is not locally homeomorphic to \mathbb{R}^{2}.

Problem 7 (2P). The map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$ is...
[] a diffeomorphism.
[] a local diffeomorphism at each point.
[x] a local diffeomorphism at each point except the origin.
[] none of the above.

Problem 8 (2P). Let $f: S_{1} \rightarrow S_{2}$ be a smooth surjective map between two smooth surfaces. If it is only known that $d_{p} f$ is injective at each point $p \in S_{1}$, then f must be...
[] a diffeomorphism.
[x] a local diffeomorphism.
[] injective.
[] none of the above.

Problem 9 (2P). Chose a correct statement from the following list:...
[] Each smooth surface in \mathbb{R}^{3} is orientable.
[x] Each smooth compact surface in \mathbb{R}^{3} is orientable.
[] If a smooth surface $S \subset \mathbb{R}^{3}$ is orientable, then S is compact.
[] If S is non-orientable, then a unit normal field may still exist on S.

Problem 10 (2P). For an arbitrary smooth function f on a smooth surface S the following holds:
[] If $p \in \operatorname{supp} f$, then $f(p) \neq 0$.
[] If $p \notin \operatorname{supp} f$, then $f(p) \neq 0$.
[x] If $p \notin \operatorname{supp} f$, then $f(p)=0$.
[] None of the above applies.

11i. $\nabla H=(1,1,1)$. Hence, $(x, y, z) \in S$ is a critical pt of h if and only if $\exists \lambda \in \mathbb{R}$ st.

$$
\nabla H=\lambda \nabla \varphi
$$

where $\varphi(x, y, z)=x^{2}+y^{2}-z^{2}-1$ Thins,

$$
\begin{aligned}
& \left\{\begin{array}{l}
2 \lambda x=1 \\
2 \lambda y=1 \\
-2 \lambda z=1
\end{array} \quad \Rightarrow \quad x=0 \quad \frac{1}{2 \lambda}, y=\frac{1}{2 \lambda}, z=-\frac{1}{2 \lambda}\right. \\
& (x, y, z) \in S \Rightarrow \frac{1}{4 \lambda^{2}}+\frac{1}{4 \lambda^{2}}-\frac{1}{4 \lambda^{2}}=1 \Rightarrow
\end{aligned}
$$

$\lambda= \pm \frac{1}{2}$. Hence, h has 2 critical pts, namely

$$
P_{1}=(1,1,-1) \quad \text { and } \quad P_{2}=(-1,-1,1)
$$

11 ii Solution 1
Let $\gamma:(-\varepsilon, \varepsilon) \rightarrow S, \gamma(t)=(x(t), y(t), z(t))$ be a curve such that

$$
\begin{array}{ll}
\gamma(0)=p_{1} & x(0)=1, y(0)=1, \quad z(0)=-1 . \\
\dot{\gamma}(0)=v \quad \dot{x}(0)=v_{1}, \quad \dot{y}(0)=v_{2}, \dot{z}(0)=v_{3} \\
\gamma(t) \in S \forall t \Rightarrow x(t)^{2}+y(t)^{2}=z(t)^{2}+1 \quad \forall t \\
\Longrightarrow x \dot{x}+y \dot{y}-z \dot{z}=0 & \text { (*) } \tag{*}
\end{array}
$$

In particular, for $t=0$ we have

$$
\begin{equation*}
v_{1}+v_{2}+v_{3}=0 \tag{**}
\end{equation*}
$$

$$
\begin{aligned}
\text { Hess }_{p_{1}} h(v)=\left.\frac{d^{2}}{d t^{2}}\right|_{t=0}(h \cdot \gamma(t))=\left.\frac{d^{2}}{d t^{2}}\right|_{t=0}(x(t)+y(t)+z(t))^{2} \\
=\ddot{x}(0)+\ddot{y}(0)+\ddot{z}(0) \\
\begin{aligned}
& \frac{d}{d t}(*) x \ddot{x}+y \ddot{y}-z \ddot{z}+\dot{x}^{2}+\dot{y}^{2}-\dot{z}^{2}=0 \\
& t=0 \\
& \Rightarrow \ddot{x}(0)+\ddot{y}(0)+\ddot{z}(0)=\dot{z}^{2}(0)^{2}-\dot{x}(0)^{2}-\dot{y}(0)^{2} \\
&=v_{3}^{2}-v_{1}^{2}-v_{2}^{2} \\
&=\left(v_{1}+v_{2}\right)^{2}-v_{1}^{2}-v_{2}^{2} \\
&=2 v_{1} v_{2}
\end{aligned}
\end{aligned}
$$

Hence, Hess h takes both positive and negative values $\Rightarrow P_{1}$ is a saddle pt (neither loci. max. nor los. minimum).
The other crit. pt can be handled in a similar manner.
Solution 2
Consider the following parametrization of S :

$$
\psi(x, y):=\left(x, y,-\sqrt{x^{2}+y^{2}-1}\right)
$$

where $(x, y) \in V=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}>1\right\}$.
Notice that $\psi(1,1)=p_{1}$.

We have

$$
\begin{aligned}
& h_{0} \psi(x, y)=H_{0} \psi(x, y)=x+y-\sqrt{x^{2}+y^{2}-1} \\
& \begin{aligned}
& \frac{\partial^{2}}{\partial x^{2}} h_{0} \psi=-\frac{\partial}{\partial x} \frac{x}{\sqrt{x^{2}+y^{2}-1}}=-\frac{\sqrt{x^{2}+y^{2}-1}-x \frac{x}{\sqrt{x^{2}+y^{2}-1}}}{x^{2}+y^{2}-1} \\
&=\frac{x^{2}+y^{2}-1-x^{2}}{\left(x^{2}+y^{2}-1\right)^{3 / 2}}=\frac{y^{2}-1}{\left(x^{2}+y^{2}-1\right)^{3 / 2}} \\
& \frac{\partial^{2}}{\partial x^{2} y} h_{0} \psi=-\frac{\partial}{\partial y} \frac{x}{\sqrt{x^{2}+y^{2}-1}}=\frac{1}{2} \frac{2 y}{\left(x^{2}+y^{2}-1\right)^{3 / 2}}=\frac{y}{\left(x^{2}+y^{2}-1\right)^{3 / 2}} \\
& \frac{\partial^{2}}{\partial y^{2}} h_{0} \psi=\frac{x^{2}-1}{\left(x^{2}+y^{2}-1\right)^{3 / 2}} \\
& \text { Hence, Hess(1,1)}(h 0 \psi)=(0 1 \\
& 1
\end{aligned}
\end{aligned}
$$

$\Rightarrow(1,1)$ is a saddle pt of h. Ψ
$\Rightarrow(1,1,-1)$ is a saddle pt of h.
One can determine the type of p_{2} by courdiving the parametrization

$$
\psi(x, y)=\left(x, y, \sqrt{x^{2}+y^{2}-1}\right)
$$

12

$$
\begin{aligned}
& 2 \text { } S=f^{-1}(c)=g^{-1}(d) \\
& \forall p \in S \quad \nabla f(p), \nabla g(p) \in T_{p} S^{\perp}, \quad \operatorname{dim} T_{p} S^{\perp}=1 \\
& \nabla g(p) \neq 0 \Rightarrow \exists \lambda=\lambda(p) \in \mathbb{R} \text { st. } \nabla f(p)=\lambda(p) \nabla g(p)
\end{aligned}
$$

Pick $p \in S$. Since $\nabla g(p) \neq 0$, without loss of generality we can assume $\frac{\partial g}{\partial x}(p) \neq 0$.

$$
\frac{\partial f}{\partial x}(q)=\lambda(q) \frac{\partial g}{\partial x}(q) \quad \forall q \in S \quad \text { a ubhd of } p \text { st } \quad \forall g(q) \neq 0
$$

$$
\lambda(q)=\frac{\partial f / \partial x(q)}{\partial g_{f x}(q)}, q \in V
$$

Both $\left.\frac{\partial f}{\partial x}\right|_{\mathrm{s}}$ and $\left.\frac{\partial g}{\partial x}\right|_{s}$ are smooth f.us on S as restrictions of smooth f-us.
Moreover, $\frac{\partial g}{\partial x}$ does not vanish on U, hence λ is smooth on U. Since smoothness is a local property, λ is smooth everywhere on S.
13 See P. 20 of Part 4 of the lecture notes (Step 1 + step 2).

14 Let $\psi: V \rightarrow U \subset S$ be a parametrization of S s.t. $p \in U$. Assume $\Psi(0)=p$. Then 0 is a critical $p t$ of $F:=f_{0} \psi$. Moreover, for any smooth curve $\beta:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{2}$ st. $\beta(0)=0$ we have

$$
\left.\frac{d^{2}}{d t^{2}}\right|_{t=0} F 0 \beta(t)=\operatorname{Hess}_{0} F(\dot{\beta}(0))
$$

Denoting $\gamma=\psi_{0} \beta$, we obtain

$$
\left.\frac{d^{2}}{d t^{2}}\right|_{t=0}(F \circ \beta(t))=\left.\frac{d^{2}}{d t^{2}}\right|_{t=0}(f 0 \gamma(t))=\operatorname{Hess}_{p} f(\dot{\gamma}(0))
$$

Furthermore, $\dot{\gamma}(0)=D_{0} \psi(\dot{\beta}(0)) \neq 0$ provided $\dot{\beta}(0) \neq 0$ since $D_{0} \psi$ is infective. Hence,
Hess f is positive-def \Rightarrow Hess. F is positive-detinite $\Rightarrow 0$ is a pt of los minimuen for F $\Rightarrow p$ is a pt of los min. for f.

15 Since S is compact, $\exists R>0$ st. $S \subset B_{R}(0) \leftarrow$ the open ball of radius R centered at the origin.
Pick a non-zero vector w in \mathbb{R}^{3}, fir example $w=(1,0,0)$. By the compactness of $S, \exists T>0$ such that

$$
\begin{aligned}
& \therefore S \subset B_{R}(t w) \quad \forall t \in[0, T) \\
& \therefore S \cap \bar{B}_{R}\left(\begin{array}{c}
T w \\
\stackrel{n}{a} \\
a
\end{array}\right) \neq \varnothing
\end{aligned}
$$

Pick any $p \in S \cap \partial \vec{B}_{R}(a)$.
Let $\gamma:(-\varepsilon, \varepsilon) \rightarrow S$ be any curve sit. $\gamma(0)=p$. By construction, $\gamma(0)=p$ and $\gamma(t) \in \bar{B}_{R}(a)$, that is the function $t \longrightarrow V \gamma(t)-a \|^{2}$ has a bloc maximum at $t=0$. Hence,

$$
\begin{aligned}
& \left.\frac{d}{d t}\right|_{t=0}\langle\gamma(t)-a, \gamma(t)-a\rangle \\
& =\langle\dot{\gamma}(0), p-a\rangle+\langle p-a, \dot{\gamma}(0)\rangle=2\langle\dot{\gamma}(0), p-a\rangle=0 \\
& \Rightarrow T_{p} S c T_{p} S_{R}^{2}(a) \\
& { }_{\partial \bar{B}_{R}}(a)
\end{aligned}
$$

Since $\operatorname{dim} T_{P} S=2=\operatorname{dim} T_{P} S_{R}^{2}(a)$, we have

$$
T_{p} S=T_{p} S_{R}^{2}(a)=(p-a)^{1}
$$

Moreover, if $\dot{\gamma}(0)=v$, then

$$
\begin{array}{r}
\left.\frac{d^{2}}{d t^{2}}\right|_{t=0}\langle\gamma(t)-a, \gamma(t)-a\rangle=2\langle\ddot{\gamma}(0), p-a\rangle+2\langle\dot{\gamma}(0), \dot{\gamma}(0)\rangle \\
=2\langle\ddot{\gamma}(0), p-a\rangle+2|v|^{2} \leqslant 0 \tag{*}
\end{array}
$$

Denote $u:=\frac{p-a}{|p-a|}$, which is a unit normal vector both to S and $S_{R}^{2}(a)$ at P.
Let h_{n} be the height $f-n$ on S in the direction of n. Then

$$
\operatorname{Hess}_{\|} h_{u}(v)=\left.\frac{d^{2}}{d t^{2}}\right|_{t=0}\langle\gamma(t), n\rangle=\langle\ddot{\gamma}(0), n\rangle
$$

$-\mathbb{I}^{S}(v)$

$$
\begin{aligned}
& (*) \\
& \leqslant-\frac{1}{|p-a|}|v|^{2}
\end{aligned}
$$

\Rightarrow Each eigenvalue of the Gauss map at p is $\geqslant \frac{1}{|p-a|} \Rightarrow K(p) \geqslant \frac{1}{|p-a|^{2}}>0$.

