Part B

In this part choose one answer from the list provided. You do not need to provide a solution or justification.

Estimated time required: 20 min.

Problem 6 (2P). The set $S := \{(x, y, z) \in \mathbb{R}^2 \mid z^4 = x^4 + y^4 \}...$

- [] is a smooth surface.
- [] is not a smooth surface, since S is disconnected.
- [] is not a smooth surface, since S is not homeomorphic to \mathbb{R}^2 .
- [x] is not a smooth surface, since S is not locally homeomorphic to \mathbb{R}^2 .

Problem 7 (2P). The map $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x, y) = (x^2 - y^2, 2xy)$ is...

- [] a diffeomorphism.
- [] a local diffeomorphism at each point.

[x] a local diffeomorphism at each point except the origin.

[] none of the above.

Problem 8 (2P). Let $f: S_1 \to S_2$ be a smooth surjective map between two smooth surfaces. If it is only known that $d_p f$ is injective at each point $p \in S_1$, then f must be...

- [] a diffeomorphism.
- [x] a local diffeomorphism.
- [] injective.
- [] none of the above.

Problem 9 (2P). Chose a correct statement from the following list:...

[] Each smooth surface in \mathbb{R}^3 is orientable.

[x] Each smooth compact surface in \mathbb{R}^3 is orientable.

[] If a smooth surface $S \subset \mathbb{R}^3$ is orientable, then S is compact.

[] If S is non-orientable, then a unit normal field may still exist on S.

Problem 10 (2P). For an arbitrary smooth function f on a smooth surface S the following holds:

[] If $p \in \operatorname{supp} f$, then $f(p) \neq 0$.

[] If $p \notin \operatorname{supp} f$, then $f(p) \neq 0$.

[x] If $p \notin \operatorname{supp} f$, then f(p) = 0.

[] None of the above applies.

$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{cases} \lambda X = 1 & \lambda \neq 0 \\ \lambda X = 1 & \Longrightarrow & X = \frac{1}{2\lambda} , Y = \frac{1}{2\lambda} , Z = -\frac{1}{2\lambda} \\ -2\lambda Z = 1 \end{cases}$
$(x, y, z) \in S \implies \frac{1}{4\lambda^2} + \frac{1}{4\lambda^2} - \frac{1}{4\lambda^2} = 1 \implies$
$\lambda = \pm \frac{1}{2}$. Hence, h has 2 critical pts, namely
$p_1 = (1, 1, -1)$ and $p_2 = (-1, -1, 1)$.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\chi(t) \in S \ At \implies \chi(t)_{5} + A(t)_{5} = 5(t)_{5} + 1 \ At$
\implies XX + yý - zż =0 (*)
In particular, for too we have
$\sqrt{1 + \sqrt{1 + \sqrt{3}}} = 0$

Hess p h (v) = $\frac{d^2}{dt^2} \Big (h \cdot \chi(t)) = \frac{d^2}{dt^2} \Big _{t=0}^{(2)} (\chi(t) + \chi(t) + \chi(t) + \chi(t)) \Big _{t=0}^{(2)}$
$= \ddot{X}(o) + \ddot{y}(o) + = \dot{z}(o)$
$\frac{d}{dt}(x) : x\ddot{x} + y\ddot{y} - z\ddot{z} + \dot{x}^2 + \dot{y}^2 - \dot{z}^2 = 0$
$\stackrel{t=0}{=} \dot{X}(0) + \ddot{y}(0) + \ddot{z}(0) = \ddot{z}(0)^{2} - \dot{X}(0)^{2} - \dot{y}(0)^{2}$
$= \sqrt{2} - \sqrt{2} - \sqrt{2}$
$\frac{(**)}{=} (V_1 + V_2)^2 - V_1^2 - V_2^2$
$= 2 V_1 V_2$
Hence, Hess h takes both poritive and negative values \implies p_1 is a saddle pt (neither loc. max.
The other crit. pt can be handled in a sincilar
manner.
Solution 2
Courider the following parametrization of S:
$\Psi(x, y) := (x, y, -\sqrt{x^2 + y^2 - 1}),$
Where $(x, y) \in V = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 > 1 \}$
Notice that $\Psi(1,1) = P_1$.

We have	3)
$h \circ \Psi(x, y) = H \circ \Psi(x, y) = x + y - \sqrt{x^2 + y^2 - 1}$	•
$\frac{\partial x^{2}}{\partial z^{2}} h \circ \psi = -\frac{\partial}{\partial x} \qquad \frac{x}{\sqrt{x^{2} + y^{2} - 1}} = -\frac{\sqrt{x^{2} + y^{2} - 1}}{\sqrt{x^{2} + y^{2} - 1}} - \frac{x}{\sqrt{x^{2} + y^{2} - 1}}$	•
$= \frac{\chi^{2} + \chi^{2} - 1 - \chi^{2}}{(\chi^{2} + \chi^{2} - 1)^{3/2}} = \frac{\chi^{2} - 1}{(\chi^{2} + \chi^{2} - 1)^{3/2}}$	•
$\frac{\partial^{2} }{\partial x^{2} y} h_{0} \psi = - \frac{\partial^{2} y}{\partial y} \frac{\chi}{\sqrt{x^{2} + y^{2} - 1}} = \frac{1}{2} \frac{\chi^{2} }{(\chi^{2} + y^{2} - 1)^{3/2}} = \frac{y}{(\chi^{2} + y^{2} - 1)^{3/2}}$	
$\frac{\partial^2}{\partial y^2} h \circ \Psi = \frac{\chi^2 - 1}{(\chi^2 + y^2 - 1)^{3/2}}$ $Hence, Hess_{(1,1)} (h \circ \Psi) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\implies (1,1) is a saddle pt of h \circ \Psi$	
\Rightarrow (1,1,-1) is a saddle pt of h.	•
One can determine the type of Pz by couridering the parametrization	•
$\Psi(x_{\ell}y) = (x, y, \sqrt{x^2+y^2-1})$	•
	•
. .	•

Ð [12] S = f'(c) = g'(d) $\forall p \in S \quad \nabla f(p), \nabla g(p) \in T_p S^{\perp}, \dim T_p S^{\perp} = 1$ $\nabla g(p) \neq 0 \implies \exists \lambda = \lambda (p) \in \mathbb{R} \text{ s.t. } \nabla f(p) = \lambda (p) \nabla g(p)$ Pick $p \in S$. Since $\nabla g(p) \neq 0$, without loss of generality we can assume $\frac{\partial g}{\partial x}(p) \neq 0$. $\frac{\partial H}{\partial x}(q) = \lambda(q) \frac{\partial q}{\partial x}(q) \quad \forall q \in S \quad and d of p st \frac{\partial q}{\partial x}(q) \neq 0$ $\lambda(q) = \frac{\partial f_{\delta x}(q)}{\partial g_{\delta x}(q)}, qev = \begin{array}{c} \operatorname{Both} \quad \frac{\partial f}{\partial x}|_{s} \quad \operatorname{and} \quad \frac{\partial q}{\partial x}|_{s} \\ \operatorname{are support} \quad f \text{-us on } S \text{ as} \\ \operatorname{restrictions of support} \quad f \text{-us}. \end{array}$ Moreover, 29 does not vanish on U, hence & is smooth on U. Since smoothness is a local property. X is smooth everywhere on S. [13] See P. 20 of Part 4 of the lecture notes (Step 1 + Step 2) 14 Let 4: V -> V c S be a parametrization of S s.t. $p \in U$. Assume $\Psi(o) = p$. Then o is a critical pt of $F := f \circ \Psi$. Moreover, for any smooth curve $\beta: (-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^2$ S.f. $\beta(o) = 0$ we have $\frac{d}{dt^{2}}\Big|_{t=0} F \circ \beta(t) = \text{Hess}_{\rho} F(\beta(\rho))$

(5) Denoting & = 4. B, we obtain $\frac{d^{2}}{dt^{2}}\Big|_{t}\left(F\circ\beta(t)\right) = \frac{d^{2}}{dt^{2}}\Big|_{t=0}\left(f\circ\gamma(t)\right) = Hess_{p}f\left(\dot{\gamma}(s)\right)$ Furthermore, $\dot{\gamma}(o) = D, \Psi(\dot{\beta}(o)) \neq 0$ provided $\dot{\beta}(o) \neq 0$ since $D_0 \Psi$ is injective. Hence, Hess & is positive-det => Hess & is positive - definite ⇒ 0 is a pt of loc minimum for F => p is a pt of loc min for f. 15 Since S is compact, JR>0 s.t. S C B_R (o) a the open ball of radius R centered at the origin Pick a non-zero vector w in R³, for example W=(1,0,0). By the compactness of S, 3T>0 such that $\forall \in [o, T)$ $S \subset B_{R}(tw)$ $S \cap \Im \overline{B}_{R}(T_{W}) \neq \emptyset$ Pick any pe SN BR(a) Let y: (-E, E) -> S be any curve s.t. X(0)=p. By construction, $\chi(o) = p$ and $\chi(t) \in B_{R}(a)$, that is the function t was $\|\gamma(t) - a\|^2$ has a loc maximum at t=0. Hence,

$\frac{d}{dt}\Big _{t=0} \langle \chi(t) - \alpha, \chi(t) - \alpha \rangle $
= $\langle \dot{\chi}(0), p-a \rangle + \langle p-a, \dot{\chi}(0) \rangle = 2 \langle \dot{\chi}(0), p-a \rangle = 0$
$\Rightarrow T_{p} S \subset T_{p} S_{p}^{2}(\alpha)$
Since dim $T_p S = 2 = \dim T_p S_R^2(a)$, we have
$T_{p} S = T_{p} S_{p}(a) = (p-a)^{T}$ Moreover, if $\dot{\gamma}(o) = V$, then $\frac{d^{2}}{dt^{2}}\Big _{t=0} \langle \gamma(t) - a, \gamma(t) - a \rangle = 2\langle \dot{\gamma}(o), p-a \rangle + 2\langle \dot{\gamma}(o), \dot{\gamma}(o) \rangle$ $= 2\langle \ddot{\gamma}(o), p-a \rangle + 2 V ^{2} \leq 0$ (*)
Denote $n := \frac{p-a}{ p-a }$, which is a unit normal vector both to S and $S_{R}^{2}(a)$ at p. Let h_{n} be the height f-n on S in the direction of n. Then
Hess $h_{u}(v) = \frac{d^{2}}{dt^{2}}\Big _{t=0} \langle \chi(t), u \rangle = \langle \dot{\chi}(o), u \rangle$ $= (x) \qquad \qquad$
=> Each eigenvalue of the Gauss map at p is $ \ge \frac{1}{ p-a } \implies K(p) \ge \frac{1}{ p-a ^2} \ge 0. $