Université libre de Bruxelles Autumn 2022

Mock Exam in Differential Geometry I

28th November 2022

Last name:

First name:

Please notice the following:

- ♦ You may bring only a pen and a bottle of water (a drink) to the exam.
- ♦ Please do not bring any paper to the exam.
- ♦ This mock exam covers only the material about smooth surfaces. The real exam will contain also questions and/or problems about smooth manifolds.
- ♦ To test yourself, try to solve (and write down clearly!) as much as possible in 3 hrs.

Please fill in only above this line!

HW	1–5	5-10	11	12	13	14	15	Σ

Mark:

Part A

Please write your answers in this part directly below each problem. Estimated time required: 20 min.

Problem 1 (2P). Formulate the definition of a smooth surface.

Problem 2 (2P). Formulate the proposition about the representability of a smooth surface as a zero locus of a function.

Problem 3 (2P). Complete the following definition: Let S_1 and S_2 be two smooth surfaces. A map $f: S_1 \to S_2$ is said to be smooth, if ...

Problem 4 (2P). Let f be a smooth map between smooth surfaces S_1 and S_2 . Define the differential of f at a point $p \in S_1$.

Problem 5 (2P). Let $h: S_1 \to S_2$ be a map between smooth compact surfaces. Formulate the theorem relating integrals of a smooth function $f: S_2 \to \mathbb{R}$ and $f \circ h$.

Part B

In this part choose one answer from the list provided. You do not need to provide a solution or justification.

Estimated time required: 20 min.

Problem 6 (2P). The set $S := \{(x, y, z) \in \mathbb{R}^2 \mid z^4 = x^4 + y^4 \}...$

- [] is a smooth surface.
- [] is not a smooth surface, since S is disconnected.
- [] is not a smooth surface, since S is not homeomorphic to \mathbb{R}^2 .
- [] is not a smooth surface, since S is not locally homeomorphic to \mathbb{R}^2 .

Problem 7 (2P). The map $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x, y) = (x^2 - y^2, 2xy)$ is...

- [] a diffeomorphism.
- [] a local diffeomorphism at each point.
- [] a local diffeomorphism at each point except the origin.
- [] none of the above.

Problem 8 (2P). Let $f: S_1 \to S_2$ be a smooth surjective map between two smooth surfaces. If it is only known that $d_p f$ is injective at each point $p \in S_1$, then f must be...

- [] a diffeomorphism.
- [] a local diffeomorphism.
- [] injective.
- [] none of the above.

Problem 9 (2P). Chose a correct statement from the following list:...

- [] Each smooth surface in \mathbb{R}^3 is orientable.
- [] Each smooth compact surface in \mathbb{R}^3 is orientable.
- [] If a smooth surface $S \subset \mathbb{R}^3$ is orientable, then S is compact.
- [] If S is non-orientable, then a unit normal field may still exist on S.

Problem 10 (2P). For an arbitrary smooth function f on a smooth surface S the following holds:

- [] If $p \in \operatorname{supp} f$, then $f(p) \neq 0$.
- [] If $p \notin \operatorname{supp} f$, then $f(p) \neq 0$.
- [] If $p \notin \operatorname{supp} f$, then f(p) = 0.
- [] None of the above applies.

Part C

Please write your solutions to the problems in Parts C and D on the blank sheets provided. Estimated time required: 1 hr 20 min.

Problem 11 (5+5P). Define $H \colon \mathbb{R}^3 \to \mathbb{R}$ by H(x, y, z) = x + y + z.

(i) Determine all critical points of $h \colon S \to \mathbb{R}$, where

 $S := \{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z^2 + 1 \} \text{ and } h = H \big|_{S}.$

(ii) Determine which critical points of h are points of local maxima/minima.

Problem 12 (10P). Show that if a surface $S \subset \mathbb{R}^3$ is represented both as $f^{-1}(c)$ and $g^{-1}(d)$ for some $f, g \in C^{\infty}(\mathbb{R}^3)$ such that $\nabla f(p) \neq 0$ and $\nabla g(p) \neq 0$ for any $p \in S$, then there exists a smooth nowhere vanishing function $\lambda \in C^{\infty}(S)$ such that $\nabla f(p) = \lambda(p)\nabla g(p)$ holds for all $p \in S$.

Problem 13 (10P). Let S be a smooth surface in \mathbb{R}^3 with positive Gauss curvature. Show that the Gauss map of S is surjective.

Part D

Estimated time required: 1 hr.

Problem 14 (10P). Let $S \subset \mathbb{R}^3$ be a smooth surface. Let p be a critical point of a smooth function $f: S \to \mathbb{R}$. Show that if the Hessian of f at p is positive-definite, then f has a local minimum at p.

Problem 15 (10P). Show that there are no smooth compact surfaces, whose Gauss curvature is everywhere non-positive.