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Chapter 1

Introduction

A substantial part of mathematics is related to solving equations of various types. Given any
equation, we may try to analyze this by studying the following sequence of questions:

1. Does there exist a solution (a root)?
2. If the answer to the previous question is affirmative, how many solutions does the equation

have?
3. If there are finitely many solutions, can we find all of them?

For example, the reader learned at school the properties of the quadratic equation ax2 +bx+
c = 0. In this case the above questions are easy to settle and the answers are well known to the
reader.

Sometimes an equation may have an infinite number of solutions. If there are only countably
many roots, the last question from the list above still makes sense. For example, all solutions of
the equation sinx = 0 are given by a simple formula: xn = πn, n ∈ Z.

In many cases, however, equations have uncountably many solutions so that asking to find
all solutions is not really meaningful. Instead, it turns out to be more interesting to replace
Question 3 by the following one:

3′. What are the properties of the set of all solutions?

Which particular properties we are interested in may depend on the context. The property
most relevant to the content of this course is concerned with the local structure of the set of all
solutions.

Let us consider an example. The equation

x2
1 + x2

2 + x2
3 = 1, (1.1)

where x1, x2, x3 ∈ R, clearly has uncountably many solutions.
Denote S2 := {x = (x1, x2, x3) ∈ R3 | x2

1 + x2
2 + x2

3 = 1}, that is S2 is the set of all
solutions of (1.1). Of course, S2 is the sphere of radius 1, however let us pretend for a moment
that we do not know this. As a subset of R3, S2 is a topological space. It turns out that this
topological space has a very particular property, which we consider in some detail next.

The familiar stereographic projection from the north pole N := (0, 0, 1) is given by

ϕN : S2 \ {N} → R2, ϕN(x) =
( x1

1− x3

,
x2

1− x3

)
.

This is in fact a homeomorphism with the inverse

ϕ−1
N (y) =

1

1 + y2
1 + y2

2

(
2y1, 2y2, −1 + y2

1 + y2
2

)
, y = (y1, y2) ∈ R2. (1.2)
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Differential Geometry I

We can also define a stereographic projection from the south pole S := (0, 0,−1) by

ϕS : S2 \ {S} → R2, ϕS(x) =
( x1

1 + x3

,
x2

1 + x3

)
,

which is also a homeomorphism.
Since any point on the sphere lies either in S2 \ {N} or S2 \ {S} (or both), any point on the

sphere has a neighbourhood, which is homeomorphic to an open subset of Rn (of course, n = 2
in our particular example and the open subset is R2 itself). This property leads to the notion of
a manifold, which will play a cenral rôle in the course. We will see below, that this property is
not specific to Equation (1.1). On the contrary, for any smooth map F : Rk → R` and almost
any c ∈ R` the set of all solutions to the equation F (x) = c is a manifold. That is, there is a
huge pull of examples of manifolds and many objects of particular interest in mathematics turn
out to be manifolds.

Coming back to our example, we compute:

ϕS ◦ ϕ
−1
N (y) =

( y1

|y|2
,
y2

|y|2
)
. (1.3)

Hence, ϕS ◦ϕ−1
N is smooth on an open subset R2\{0} and a similar computation yields that this is

also true for ϕN ◦ϕ−1
S . This property can be used to study smooth functions on the sphere directly

without reference to the ambient space. More importantly, in more general situations where the
ambient Euclidean space may be simply absent, an analogue of this property allows one to apply
familiar tools of analysis to functions defined on more sophisticated objects than just subsets of
an Euclidean space. In some sense, this constitutes the core of differential geometry.

Summing up, the aim of these notes is to transfer familiar tools of mathematical analysis to
a more geometric setting where the underlying domain of a function (map) is not just an open
subset of Rn, but rather a manifold. The benefits of doing so are ubiquitous, but explaining this
in some detail requires a bit of work. It is my hope to convey that the notion of a manifold is
useful and well worth studying further.
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Chapter 2

Smooth manifolds

2.1 Basic definitions and examples
Recall that a topological spaceM is called Hausdorff, if for any two distinct pointsm1,m2 ∈M
there are neighbourhoods U1 3 m1 and U2 3 m2 such that U1 ∩ U2 = ∅. If the topology of
M admits a countable base, then M is said to be second countable. For example, Rk is both
Hausdorff and second countable.

Definition 2.1. A Hausdorff second countable topological space M is called a topological
manifold of dimension k, if M is locally homeomorphic to Rk.

To explain, this means that any pointm ∈M admits a neighbourhoodU and a homeomorphism
ϕ : U → V , where V is an open subset of Rk. The pair (U,ϕ) (or, sometimes just U ) is called
a chart on M near m.

Notice that the requirements that a manifold is Hausdorff and second countable are to a great
extent of technical nature, whereas being locally homeomorphic to Rk is a crucial property of
manifolds.

Clearly, Rk and in fact any open subset of Rk are examples of topological manifolds of
dimension k. As we have established in the introduction, 2-spheres are manifolds of dimension
two. Similar arguments yield in fact that the k-sphere

Sk :=
{

(x1, . . . , xk+1) ∈ Rk+1 |
k+1∑
j=1

x2
j = 1

}
is a k-manifold.

Somewhat special is the case of dimension zero. Since R0 is by definition a single point, the
above definition requires that each point of M has a neighborhood consisting only of this point.
In other words, M is a countable discrete space.

Definition 2.2. A collection of charts U = {(Uα, φα) | α ∈ A} is called a C0-atlas, if⋃
α∈A Uα = M , that is if any point of M is contained in some chart. Here A is an arbitrary

index set.

For example, Rk admits a C0-atlas consisting of a single chart (Rk, id). In the introduction
we have constructed a C0-atlas on the 2-sphere consisting of two charts. However, there is no
C0-atlas on S2 consisting of a single chart, since S2 is not homeomorphic to an open subset of
R2 (why?).
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Given a C0-atlas U , pick any two charts (Uα, ϕα) and (Uβ, ϕβ) such that Uα ∩Uβ 6= ∅. The
map

θαβ := ϕα ◦ ϕ
−1
β : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ), (2.3)

which a homeomorphisn between two open subsets of Rk, is called a coordinate transformation1.
Notice that θβα is the inverse map to θαβ . In particular, θαβ is a homeomorphism between
ϕβ(Uα ∩ Uβ) and ϕα(Uα ∩ Uβ).

It is a common practice to suppress the domain and the target of θαβ writing simply θαβ =
ϕα ◦ ϕ

−1
β . While this may be confusing at first, the advantage is that this allows us to suppress

less important details so that the most essential features are clearer. If in doubt, the reader
should write the domain and target explicitly.

Definition 2.4. A C0-atlas U is called smooth, if all coordinate transformation maps θαβ , α, β ∈
A, are smooth.

Remark 2.5. Equally well, we can say that U is a C`-atlas, if all coordinate transformation maps
belong to C`(Rn;Rn) (keep in mind that these are defined on open subsets of Rn only) for some
fixed natural number `. The theory does not depend much on the choice of ` as long as ` is not
too small. In practice ` ≥ 3 would suffice in most of the cases, however to avoid non-essential
details it is convenient to put ` =∞ from the very beginning.

Two charts (U,ϕ) and any (V, ψ) not necessarily from the same atlas are said to be smoothly
compatible if the maps

ϕ ◦ ψ−1 and ψ ◦ ϕ−1 (2.6)

are smooth, compare with (2.3). We consider two atlases U and V as “essentially equal”, if
all charts from U are smoothly compatible with all charts in V . More formally, we have the
following definition.

Definition 2.7. Two atlases U and V on the same underlying topological space M are called
equivalent, if U ∪V is a smooth atlas on M , that is if all charts from U are smoothly compatible
with all charts in V . An equivalence class of atlases is called a smooth structure onM . A smooth
manifold consists of a Hausdorff second countable topological space and a smooth structure.

To explain the point of the above definition, consider the 2-sphere. In the introduction we
constructed a smooth atlas on S2, namely U :=

{
(S2 \ {N}, ϕN), (S2 \ {S}, ϕS)

}
. However,

there are many ways to construct another smooth atlas, for example as follows:

U ′ :=
{
S2 \ {N}, ϕN

}
∪
{

(S2
+, ϕ+)

}
.

Here S2
+ :=

{
x ∈ S2 | x3 > 0

}
and ϕ+(x) = (x1, x2).

Exercise 2.8. Check that U ′ is a smooth atlas equivalent to U .

It should be intuitively clear, that the description of S2 via smooth atlases U and U ′ are
‘essentially equal’. Hence, it is natural to identify (S2,U) and (S2,U ′).

An atlas U is called maximal, if for any chart (V, ψ) smoothly compatible with all charts in
U is already contained in U .

The importance of maximal atlases stems from the following result.

Lemma 2.9. Each equivalence class of smooth atlases is represented by a unique maximal
atlas.

1The origin of this terminology will be clear below.
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Proof. For a smooth atlas U on M define

Umax :=
{

(V, ψ) is a chart on M s.t. (2.6) are both smooth for all (U,ϕ) ∈ U
}
.

Exercise 2.10. Check that Umax is a smooth atlas on M .

By the construction of Umax, we have U ⊂ Umax. Hence, any chart smoothly compatible
with any chart in Umax is also smoothly compatible with any chart in U and therefore is
contained in Umax. Hence, Umax is maximal. Clearly, U and Umax represent the same smooth
structure. �

By the above lemma, a smooth manifold may be considered as being equipped with a
maximal atlas. In particular, if U is any smooth atlas on M , we may freely add any chart
smoothly compatible with all charts in U without changing the smooth structure. For example,
if (U,ϕ) is a chart near m0, then (U, ϕ̂) with

ϕ̂(m) = ϕ(m)− ϕ(m0)

is also a chart near m0 ∈M smoothly compatible with all charts in U . The chart (U, ϕ̂) satisfies

ϕ̂(m0) = 0,

which is commonly expressed by saying that (U, ϕ̂) is centered at m0.

Remark 2.11. In what follows only smooth manifolds will be considered. Therefore, by saying
that M is a manifold, we always mean a smooth manifold, unless explicitly stated otherwise.

Let us finish this section with some further examples of manifolds.

Example 2.12 (Products). LetM andN be smooth manifolds of dimensions k and ` respectively.
Let U =

{
(Uα, ϕα) | α ∈ A

}
and V =

{
(Vλ, ψλ) | λ ∈ Λ

}
be smooth atlases on M and N

respectively. Then the product M ×N is a Hausdorff second countable topological space. We
define a C0-atlas on M ×N by setting

W :=
{(
Uα × Vλ, ϕα × ψλ

)
| α ∈ A, λ ∈ Λ

}
.

Given any two charts
(
Uα×Vλ, ϕα×ψλ

)
and

(
Uβ×Vµ, ϕβ×ψµ

)
the corresponding coordinate

transformation is given by θαβ × ηλµ, where θαβ = ϕα ◦ ϕ
−1
β and ηλµ = ψλ ◦ ψ

−1
µ are smooth

maps. More precisely, this means the following:

θαβ × ηλµ : Rk × R` → Rk × R`,

θαβ × ηλµ(x, y) =
(
θαβ(x), ηλµ(y)

)
, x ∈ Rk, y ∈ R`.

In particular, θαβ × ηλµ is a smooth map, which means that the atlas constructed above is
smooth. Hence, M ×N is a smooth manifold of dimension k + `. This yields in particular that
the following

(i) the k-dimensional torus Tk := S1 × · · · × S1 and

(ii) the cylinder R× S1

are smooth manifolds. In the latter case, the dimension of R× S1 equals 2.
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Example 2.13 (Real projective spaces). The real projective space RPk of dimension k is defined
to be the set of all lines in Rk+1 through the origin. Since each line through the origin is uniquely
determined by a point on this line distinct from the origin, we have

RPk =
(
Rk+1 \ {0}

)
/ ∼,

where x, y ∈ Rk+1 \ {0} are defined to be equivalent if and only if there exists λ ∈ R \ {0}
such that y = λx. In particular, we have the canonical surjective quotient map

π : Rk+1 \ {0} → RPk, π(x) = [x].

If x = (x0, x1, . . . , xk) ∈ Rk+1 \ {0}, it is customary to write [x0 : x1 : . . . : xk] for [x].
We endow RPk with the quotient topology, that is U ⊂ RPk is open if and only π−1(U) is

open in Rk+1 \ {0}. It is straighforward to check that this yields a Hausdorff second countable
topological space.

To construct a C0-atlas on RPk, observe that each

Uj :=
{

[x0 : x1 : . . . : xk] ∈ RPk | xj 6= 0
}
, j = 0, 1, . . . , k,

is an open subset of RPk. Indeed, this follows from the fact that

π−1(Uj) =
{

(x0, . . . , xk) ∈ Rk+1 \ {0} | xj 6= 0
}

is an open subset of Rk+1 \ {0}.
The map

ϕj : Uj → Rk,

ϕj
[
x0 : x1 : . . . : xj−1 : xj : xj+1 : . . . : xk

]
=
( x0

xj
,
x1

xj
, . . . ,

xj−1

xj
,
xj+1

xj
, . . . ,

xk
xj

)
is well-defined and continuous. Moreover, the map

ψj : Rk → Uj, ψj
(
y0, y1, . . . , yk−1

)
=
[
y0 : y1 : . . . : yj−1 : 1 : yj : . . . : yk−1

]
(2.14)

is a continuous inverse of ϕj , that is ϕj is a homeomorphism. Since the collection U0, . . . , Uk
clearly covers all of RPk, U :=

{
(Uj, ϕj) | j = 0, 1, . . . , k

}
is a C0-atlas on RPk.

Next, let us consider the coordinate transformations. To simplify the notations we consider
only the map θ01 = ϕ0 ◦ ϕ

−1
1 = ϕ0 ◦ ψ1. We have

θ01(y0, . . . , yk−1) = ϕ0

(
[y0 : 1 : y1, . . . , yk−1]

)
=
( 1

y0

,
y1

y0

, . . . ,
yk−1

y0

)
,

which is smooth on
ϕ1

(
U0 ∩ U1

)
=
{
y ∈ Rk | y0 6= 0

}
.

A similar argument yields that all coordinate transformations θij = ϕi ◦ ψj are smooth on their
domains of definition. Thus, U is a smooth atlas and RPk is a smooth manifold of dimension k.

It may be useful to keep some non-examples of manifolds in mind.

(a) The set M = {(x, y) ∈ R2 | x2 = y2} consisting of two straight lines y = ±x
intersecting at the origin, is not a manifold. Indeed, if M were a manifold, its dimension
must be one. However, the origin does not have a neighbourhood in M homeomorphic to
an open subset of R1 (Why?).
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(b) A disjoint union of manifolds is a manifold. However, a disjoint uncountable union of
non-empty manifolds is not a manifold, since the second countability axiom is violated.
For example, the disjoint union of real lines labeled by α ∈ (0, 1)

N :=
⊔

α∈(0,1)

Rα

is not a manifold. Notice that the above example is not homeomorphic to (0, 1) × R,
which is a manifold indeed, since, for example, each line Rα ⊂ N is an open subset.

(c) Consider the following line “with a double point”:

L := (−∞, 0) ∪ {a, b} ∪ (0,+∞).

Here {a, b} is understood as a set consisting of two distinct elements. The following two
subsets

Ua := (−∞, 0) ∪ {a} ∪ (0,+∞) and Ub := (−∞, 0) ∪ {b} ∪ (0,+∞)

cover all of L. Define ϕa : Ua → R by ϕa(x) = x if x 6= a and ϕa(a) = 0. By the same
token we can define ϕb : Ub → R.

A topology on L is defined simply by saying that V is open if and only if ϕa(V ∩Ua) and
ϕb(V ∩ Ub) are open in R.

This yields a second countable topological space with a smooth atlas. However, L is
non-Hausdorff.

L 1

2.2 Smooth maps
Given a smooth structure on M , we can make sense of smoothness of functions defined on M
as follows.

Definition 2.15. Let M be a manifold with a smooth structure represented by a smooth atlas
U = {(Uα, ϕa)}. A function f : M → R is said to be smooth, if for any chart (Uα, ϕa) the
function f ◦ ϕ−1

α : Rk → R is smooth.

Notice that since an open subset V of M is again a smooth manifold, it makes sense to
say that a function is smooth on V . The smoothness of functions is then a local property in
the following sense: f is smooth if and only if the restriction of f to any open subset of M is
smooth. In particular, if {Vα | α ∈ A} is an open covering of M and f is smooth on each Vα,
then f is smooth on M .

Strictly speaking, we still have to show that the notion of smoothness in Definition 2.15 is
independent of the choice of an atlas. Indeed, assume that f is smooth with respect to U and
pick an atlas V = {(Vµ, ψµ)} equivalent to U . Then on ψµ(Uα ∩ Vµ) ⊂ Rn we have

f ◦ ψ−1
µ

∣∣
ψµ(Uα∩Vµ)

= f ◦ ϕ−1
α
◦ ϕα ◦ ψ

−1
µ

∣∣
ψµ(Uα∩Vµ)

= f ◦ ϕ−1
α
◦ θαµ

∣∣
ψµ(Uα∩Vµ)

,

where θαµ = ϕα ◦ ψ
−1
µ is a smooth map. Hence, f is smooth with respect to V on any subset

Uα ∩ Vµ. Since these subsets cover all of M , f is smooth on M with respect to V .
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Example 2.16. Let F : R3 → R be any smooth function. Define f : S2 → R as the restriction
of F to S2. I claim that f is a smooth function on S2. Indeed, let (U,ϕ) be any chart on S2

constructed in the introduction. For concreteness, let us pick the chart
(
S2 \ {N}, ϕN

)
. Then

f ◦ ϕ−1
N (y1, y2) = F

( 2y1

1 + y2
1 + y2

2

,
2y2

1 + y2
1 + y2

2

,
−1 + y2

1 + y2
2

1 + y2
1 + y2

2

)
, (y1, y2) ∈ R2.

Hence, f ◦ ϕ−1 is smooth and it is clear that this is also the case for
(
S2 \ {S}, ϕS

)
. Thus, f is

a smooth function on S2.

Example 2.17. Let F : Rk+1 \ {0} → R be a smooth homogeneous function of degree 0, that
is F (λx) = F (x) for all λ ∈ R \ {0} and x ∈ Rk+1 \ {0}. Define f : RPk → R by setting
f
(
[x]
)

= F (x). This yields a well-defined function, which I claim is smooth. Indeed, pick any
chart (Uj, ϕj) constructed in Example 2.13. Using (2.14), we obtain

f ◦ ϕ−1
j (y0, . . . , yk−1) = F (y0, . . . , yj−1, 1, yj, . . . , yk−1),

which is smooth everywhere on Rk. Hence, f is smooth.

Proposition 2.18. The set C∞(M) of all smooth functions on a manifold M is an algebra, that
is

• f, g ∈ C∞(M), λ, µ ∈ R =⇒ λf + µg ∈ C∞(M);

• f, g ∈ C∞(M) =⇒ f · g ∈ C∞(M).

Proof. Let f, g be any two smooth functions and λ, µ two real numbers. For any chart (U,ϕ)
the functions (

λf + µg
)
◦ ϕ−1 = λ

(
f ◦ ϕ−1

)
+ µ
(
g ◦ ϕ−1

)
,

(f · g) ◦ ϕ−1 = f ◦ ϕ−1 · g ◦ ϕ−1

are clearly smooth, hence λf + µg and f · g are smooth functions on M . �

Let f : M → R` be a map, which can be written as an `-tuple of functions: f = (f1, . . . , f`).
We say that f is smooth, if each component fj is a smooth function on M .

It is also possible to define the notion of smoothness for maps between manifolds. To this
end, let M and N be two manifolds of dimensions k and ` respectively. Pick an atlas U on M
and an atlas V on N .

Definition 2.19. A continuous map f : M → N is said to be smooth, if for any (U,ϕ) ∈ U and
any (V, ψ) ∈ V the map

ψ ◦ f ◦ ϕ−1 : Rk → R`

is smooth.

Remark 2.20. The requirement that f is continuous in the above definition is only needed to
ensure that ψ ◦ f ◦ ϕ−1 is defined on an open subset of Rk. The map ψ ◦ f ◦ ϕ−1 is called the
coordinate presentation of f (with respect to charts (U,ϕ) and (V, ψ)).

The argument used to verify that the notion of smoothness of a function is well-defined is
very common in the theory of manifolds and will be typically omitted below. However, the
reader may wish to prove the following proposition as an exercise.

Proposition 2.21. If f : M → N and g : N → L are smooth maps between smooth manifolds,
then g ◦ f is also smooth. �
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Definition 2.22. A smooth map f : M → N such that f−1 : N → M exists and is also smooth
is called a diffeomorphism.

Observe that if (U,ϕ) is a chart, then ϕ : U → ϕ(U) ⊂ Rk is a diffeomorphism.
To obtain a somewhat non-trivial example of a diffeomorphism, consider the tangent function:

tan:
(
− π/2, π/2

)
→ R, tan(x) =

sinx

cosx
.

This is smooth, bijective, the inverse function arctan exists and is smooth. Hence the interval
(−π/2, π/2) is diffeomorphic to R. In fact any open interval is diffeomorphic to R (Why?).

A standard non-example is given by the map

f : R→ R, f(x) = x3,

which is clearly smooth and bijective. The inverse map however fails to be smooth at the origin
so that f is not a diffeomorphism.

If there exists a diffeomorphism betweenM andN , we say thatM andN are diffeomorphic.
Notice that in this case we must have k = dimM = dimN = `. Indeed, if f is a diffeomorphism
between M and N , then F := ψ ◦ f ◦ ϕ−1 is a diffeomorphism between open subsets of Rk and
R`. Let us denote G := F−1 = ϕ ◦ f−1 ◦ ψ−1, which is smooth by the definition of smoothness
for f−1. Diferentiating G ◦ F = idRk at the point G(x), we obtain

idRk = DG(x)( idRk) = DG(x)

(
G ◦ F

)
= DF (G(x))G ·DG(x)F = DxG ·DG(x)F,

where idRk is the identity map. In particular, DG is surjective at each point. Furthermore, by
a similar argument applied to the identity F ◦G = idR` , we obtain that DG is injective at each
point. In other words, DyG : R` → Rk is a linear isomorphism, which is only possible if k = `.

Definition 2.23. A map f : M → N is called a local diffeomorphism, if for any point m ∈ M
there exists an open neighbourhood U 3 m in M and an open neighbourhood V 3 f(m) in N
such that

f
∣∣
U

: U → V

is a diffeomorphism.

A non-trivial example of a local diffeomorphism can be obtained as follows. The map

f : R→ S1, f(x) =
(

sinx, cosx
)

is a local diffeomorphism (why?), which is not a diffeomorphism, since f(0) = f(± 2π) =
f(± 4π) = . . .

A non-trivial result from the course of analysis we need here is the following.

Theorem 2.24. Let U be open in Rn and f : U → Rk be smooth. Assume that at some x ∈ U
the differential Dxf of f is invertible. Then n = k and f is a local diffeomorphism at x, that is
there exist open subsets U ′ 3 x and V 3 f(x) such that

f
∣∣
U ′

: U ′ → V

is a diffeomorphism.

A proof of this theorem can be found for example in [BT03, Thm 9.4.1].

Draft 10 January 17, 2022



Differential Geometry I

2.3 The fundamental theorem of algebra
As an application of the notions introduced in the preceding sections, we prove the fundamental
theorem of algebra in this section. This requires some additional notions and constructions,
which are of independent interest.

Let M and N be two manifolds of dimensions k and ` respectively. Pick a smooth map
f : M → N , a point m ∈M and charts (U0, ϕ0) and (V0, ψ0) such that m ∈ U and f(m) ∈ V .

Definition 2.25. We say that m is a critical point of f if the differential of the coordinate
representation

Dϕ0(m)

(
ψ0 ◦ f ◦ ϕ

−1
0

)
(2.26)

is non-surjective at ϕ0(m).

Lemma 2.27. The notion of a critical point is well-defined, i.e., this is independent of the choice
of charts.

Proof. Pick any charts (U1, ϕ1) and (V1, ψ1) such that m ∈ U1 and f(m) ∈ V1. We have

ψ0 ◦ f ◦ ϕ
−1
0 = ψ0 ◦ ψ

−1
1
◦ ψ1 ◦ f ◦ ϕ

−1
1
◦ ϕ1 ◦ ϕ

−1
0 = θψ01

◦
(
ψ1 ◦ f ◦ ϕ

−1
1

)
◦ θϕ10,

which is valid on an open subset containing m. Hence, by the chain rule, we obtain for the
differentials

D
(
ψ0 ◦ f ◦ ϕ

−1
0

)
= Dθψ01

◦D
(
ψ1 ◦ f ◦ ϕ

−1
1

)
◦Dθϕ10.

Since Dθψ01 and Dθϕ10 are invertible everywhere on the domain of their definition, we obtain that
D
(
ψ0 ◦ f ◦ ϕ

−1
0

)
is non-surjective at ϕ0(m) if and only if D

(
ψ1 ◦ f ◦ ϕ

−1
1

)
is non-surjective at

ϕ1(m). This finishes the proof of this lemma. �

Definition 2.28. Any non-critical point is called regular. We say that n ∈ N is a regular value
of f , if f−1(n) consists of regular points only. If f−1(n) contains at least one singular point,
then n is called a singular value of f .

Let me stress that any point, which does not lie in the image of f , is a regular value of f
(this fact of course follows from the definition but may be easily missed at first).

Notice that in the particular case k = `, (2.26) is a linear map Rk → Rk. Hence, (2.26) is
non-surjective if and only if it has a non-trivial kernel, or, still if and only if detDϕ0(m)

(
ψ0 ◦ f ◦

ϕ−1
0

)
= 0.

With these preliminaries at hand, we can prove the following.

Theorem 2.29 (The fundamental theorem of algebra). Let p(z) := akz
k + ak−1z

k−1 + · · · +
a1z + a0 be a polynomial with complex coefficients of degree k ≥ 1. Then p has at least one
(complex) root.

Proof. Identify R2 with C by writing

y = (y1, y2) ≡ y1 + y2i = z.

For a fixed polynomial p = akz
k + · · ·+ a1z+ a0 such that ak 6= 0, where k ≥ 1 , define a map

f : S2 → S2 by the rule

f(x) =

{
N, if x = N,

ϕ−1
N
◦ p ◦ ϕN(x), if x 6= N.

(2.30)

The proof proceeds in a number of steps.
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Step 1. f is smooth.

It is enough to check that f is smooth near N , i.e., that ϕS ◦ f ◦ ϕ−1
S is smooth. To see this,

consider
ϕS ◦ f ◦ ϕ

−1
S = ϕS ◦ ϕ

−1
N
◦ ϕN ◦ f ◦ ϕ

−1
N
◦ ϕN ◦ ϕ

−1
S = θSN ◦ p ◦ θ

−1
SN ,

which is valid on C \ {0}. By (1.3),

θSN(z) =
z

zz̄
=

1

z̄
.

Consequently, for z 6= 0 we have

ϕS ◦ f ◦ ϕ
−1
S (z) =

1

p(1/z̄)
=

1
āk
zk

+ · · ·+ ā1
z

+ ā0

=
zk

āk + · · ·+ ā1zk−1 + ā0zk
.

Since ϕS ◦ f ◦ ϕ−1
S (0) = 0, ϕS ◦ f ◦ ϕ−1

S is clearly smooth on C. Hence, f is smooth as claimed.

Step 2. The differential of the map z 7→ p(z) at the point z can be identified with h 7→ p′(z)h,
where

p′(z) = kakz
k−1 + . . . 2a2z + a1.

Denote p(z) = u(y1, y2)+v(y1, y2)i. Since p is a holomorphic function of z, by the Cauchy-
Riemann equations we have

Dzp(h) =


∂u

∂y1

∂u

∂y2

∂v

∂y1

∂v

∂y2


h1

h2

 =


∂u

∂y1

h1 −
∂v

∂y1

h2

∂v

∂y1

h1 +
∂u

∂y1

h2


≡
( ∂u
∂y1

h1 −
∂v

∂y1

h2

)
+
( ∂v
∂y1

h1 +
∂u

∂y1

h2

)
i

=
∂p

∂y1

h = p′(z)h.

Step 3. The set of critical values of f is finite.

Indeed, any critical point of f is either N or of the form ϕ−1
N (z), where z is a zero of the

polynomial
p′(z) = kakz

k−1 + . . . 2a2z + a1.

Hence, the number of critical points of f is finite and therefore the number of critical values is
also finite.
Remark 2.31. Notice that N is a critical point of f as long as k ≥ 2, which we can assume
without loss of generality, since any polynomial of degree 1 obviously has a root.

Step 4. For any regular value x ∈ S2, the number of points in f−1(x) is finite and independent
of x.

First notice that the set R(f) of regular values is open and connected as a complement of a
finite number of points in S2.

Furthermore, for any n ∈ R(f) and any m ∈ f−1(n), the map ϕN ◦ f ◦ ϕ
−1
N = p is a

local diffeomorphism at ϕ(m) by Theorem 2.24. Since ϕN is a homeomorphism, f is a local
homeomorphism at m. In particular, there is a neighbourhood U ′ 3 m such that U ′ ∩ f−1(n) =
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{m}. Thus, f−1(n) is discreet. Since S2 is compact, f−1(n) is also compact as a closed subset
of a compact space. Hence, f−1(n) must in fact be a finite set.

The above argument actually shows that the map

R(f) 3 x 7→ #f−1(x) ∈ N (2.32)

is locally constant. SinceR(f) is connected, this function must be constant.

Step 5. We prove this theorem.

Observe first that (2.32) cannot vanish everywhere on R(f). Indeed, the image of f is
obviously infinite, whereas the set of critical values is finite by Step 3. Hence, there are regular
values, which are in the image of f .

In fact, (2.32) vanishes nowhere as a locally constant function on an open connected space.
Hence, f−1(S) 6= ∅ as long as S ∈ R(f). Also, if S is a critical value, then f−1(S) contains
at least one critical point. In either case, f−1(S) is non-empty, which means that p has at least
one root. �

The above proof turns out to contain a few ideas which can be used in other circumstances
too. However, this requires some technical results, which are proved first. L 2

2.4 Tangent spaces
We begin with the following consideration. Let γ be a smooth curve in Rk through some p ∈ Rk,
that is a smooth map γ : (a, b) → Rk, such that γ(t0) = p for some t0 ∈ (a, b). Recall that the
tangent vector of γ at p is

γ̇(t0) :=
d

dt

∣∣∣
t=t0

γ(t) ∈ Rk.

Let now γ be a smooth curve on the 2-sphere through some p ∈ S2. Since S2 is a subset of
R3, we may think of γ as a curve in R3 satisfying

γ2
1(t) + γ2

2(t) + γ2
3(t) = 1 ∀t ∈ (a, b). (2.33)

It is reasonable to call the set

TpS
2 :=

{
v ∈ R3 | v is the tangent vector of some smooth curve on S2 through p

}
the tangent space of S2 at the point p.

To determine TpS2 more explicitly, differentiate (2.33) with respect to t and set t = t0:

γ1(t0)γ̇1(t0) + γ2(t0)γ̇2(t0) + γ3(t0)γ̇3(t0) = 0 ⇐⇒ 〈p, γ̇(t0)〉 = 0.

In other words, the tangent vector of any smooth curve on S2 through p is necessarily orthogonal
to p. Moreover, it is clear that any vector orthogonal to p arises in this way (consider all great
circles through p). Hence,

TpS
2 = p⊥.

However, for an abstract manifold M a smooth curve γ on M does not lie in an Euclidean
space in any obvious way so that the above definition of TpS2 does not immediately generalize.
A nice workaround goes as follows.

Let γ be a smooth curve through m ∈ M . We can assume that γ is defined on (−ε, ε) for
some ε > 0 and γ(0) = m.
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Definition 2.34. Two smooth curves γ1 and γ2 through m as above are said to be equivalent, if
for some chart (U,ϕ) such that m ∈ U we have

d

dt

∣∣∣
t=0

(
ϕ ◦ γ1(t)

)
=

d

dt

∣∣∣
t=0

(
ϕ ◦ γ2(t)

)
. (2.35)

In other words, γ1 ∼ γ2 if and only if the smooth curves ϕ ◦ γ1 and ϕ ◦ γ1 in Rk (!) have the
same tangent vector.

Furthermore, an equivalence class of smooth curves is called a tangent vector at m. The set
TmM of all tangent vectors at m is called the tangent space at m.

Exercise 2.36. Show that the above equivalence relation is independent of the choice of a chart.

Exercise 2.37. Show that the tangent space to S2 at some p ∈ S2 in the sense of Definition 2.34
is p⊥.

While Definition 2.34 is has a clear geometric meaning, the algebraic structure of TmM
is opaque in this approach. For this reason we adopt an alternative definition, which is more
algebraic.

First notice that given any tangent vector [γ] throughmwe can define the map ∂[γ] : C
∞(M)→

R by setting

∂[γ](f) =
d

dt

∣∣∣
t=0
f
(
γ(t)

)
= lim

t→0

f
(
γ(t)

)
− f(m)

t
.

Proposition 2.38. The map ∂[γ] is well defined and has the following properties:

(i) ∂[γ] is R-linear, that is

∂[γ]

(
λf + µg

)
= λ ∂[γ](f) + µ ∂[γ](g)

holds for all λ, µ ∈ R and f, g ∈ C∞(M).

(ii) ∂[γ] satisfies
∂[γ](fg) = ∂[γ](f)g(m) + f(m)∂[γ](g)

for all f, g ∈ C∞(M).

Proof. We only need to prove that ∂[γ] is well-defined, since (i) and (ii) are clear from the
definition.

Thus, pick two smooth equivalent curves γ1 and γ2 through m. Pick also a chart (U,ϕ) near
m and denote F := f ◦ ϕ−1 : Rk → R and βj := ϕ ◦ γj : (−ε, ε)→ Rk. Notice, that

β̇1(0) = β̇2(0) =: v,

since γ1 and γ2 are equivalent.
We have

d

dt

∣∣∣
t=0

(
f ◦ γ1(t)

)
=

d

dt

∣∣∣
t=0

(
f ◦ ϕ−1 ◦ ϕ ◦ γ1(t)

)
=

d

dt

∣∣∣
t=0

(
F ◦ β1(t)

)
= DvF

(
ϕ(m)

)
,

where DvF is the derivative of F in the direction of v, that is

DvF =
k∑
j=1

∂F

∂xj
vj = 〈∇F, v〉. (2.39)
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A similar computation yields also

d

dt

∣∣∣
t=0

(
f ◦ γ2(t)

)
= DvF

(
ϕ(m)

)
,

thus demonstrating that ∂[γ] depends on the equivalence class of γ only as the notation suggests.
�

Motivated by the above proposition we give the following

Definition 2.40. An R-linear map ∂ : C∞(M)→ R satisfying the Leibnitz rule

∂(fg) = ∂(f) g(m) + f(m) ∂(g) ∀f, g ∈ C∞(M)

is called a derivation at m.

Notice that a constant function, which takes value 1 everywhere on M , is annihilated by any
derivation. Indeed, this follows from the following computation:

∂(1) = ∂(12) = ∂(1) · 1 + 1 · ∂(1) = 2 ∂(1).

By the linearity of derivations, any constant function is annihilated by each derivation.
For the proof of Proposition 2.42 below, we need the following technical result, whose proof

is deferred till the next section.

Proposition 2.41. For any manifold M and any point m0 ∈M the following holds.

(i) Suppose f is a smooth function defined on a neighborhood U of m0. Then there is a
smooth function f̂ defined everywhere on M and a neighborhood Û ⊂ U of m0 such that
f and f̂ coincide everywhere on Û .

(ii) Let ∂ be a derivation at m0. If f and f̂ are two smooth functions defined everywhere on
M such that the restrictions of f and f̂ to some neighborhood Û of m0 are equal, then
∂(f) = ∂(f̂).

Thus, for any tangent vector at m we constructed an explicit derivation at m. It turns out
that this map is a bijection as we show next.

Denote temporarily by DermM the set of all derivations at m.

Proposition 2.42. The map

TmM → DermM, [γ] 7→ ∂[γ] (2.43)

is a bijection.

Proof. We continue to use notations of the proof of Proposition 2.38. In addition, the chart
(U,ϕ) is assumed to be centered at m0.

Step 1. (2.43) is injective.

Assume ∂[γ1] = ∂[γ2], that is ∂[γ1](f) = ∂[γ2](f) holds for any f ∈ C∞(M). This implies in
turn that

Dv1F
(
ϕ(m)

)
= Dv2F

(
ϕ(m)

)
holds for any F ∈ C∞(Rk), where vj = β̇j(0). Substituting F = xj in the above equality, we
obtain that the jth components of v1 and v2 are equal for any j, i.e., v1 = v2, which yields in
turn that γ1 and γ2 are equivalent. Hence, the injectivity of (2.43) follows.
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Step 2. For any F ∈ C∞(Rk) there exist smooth functions G1, . . . , Gk such that

F (x) = F (0) +
k∑
j=1

xjGj(x). (2.44)

This follows by the following computation:

F (x)− F (0) =

∫ 1

0

d

dt
F (tx) dt =

∫ 1

0

〈∇F (tx), x〉 dt,

which yields (2.44) with Gj(x) =
∫ 1

0
∂F
∂xj

(tx) dt.

Step 3. (2.43) is surjective.

Denote the jth component of ϕ by xj so that ϕ = (x1, . . . , xk). Notice that each xj is a
smooth function defined on U .

By Proposition 2.41, we can find Û ⊂ U and a smooth function x̂j defined everywhere on
U such that xj and x̂j coincide on Û .

Pick any ∂ ∈ DermM and define

vj := ∂(x̂j) ∈ R, v = (v1, . . . , vk),

Notice that by Proposition 2.41, (ii), vj does not depend on the choice of x̂j .
Furthermore, define

β : (−ε, ε)→ Rk, β(t) =
(
v1t, . . . , vkt

)
,

γ : (−ε, ε)→M, γ := ϕ−1 ◦ β.

By the previous step, there exist some functions Gj : Rk → R such that f ◦ ϕ−1(x) =∑
xjGj(x). Hence,

f = f(m) +
k∑
j=1

xjgj, (2.45)

where we think of xj as a function on U and gj = Gj ◦ ϕ. In particular, xj(m) = 0 for all
j = 1, . . . , k.

Applying Proposition 2.41, (i) again, we can find some ĝj defined globally on M and a
neighbourhood2 Û ⊂ U such that

f
∣∣
Û

= f(m) +
k∑
j=1

x̂j ĝj
∣∣
Û

= f(m) +
k∑
j=1

xjgj
∣∣
Û
.

By Proposition 2.41, (ii) we obtain

∂(f) = ∂
(
f(m)

)
+

k∑
j=1

∂(xj)gj(m) + xj(m)∂(gj)

= 0 +
k∑
j=1

vjgj(m) + 0 =
k∑
j=1

vjgj(m).

(2.46)

2Shrinking the neighbourhoods if necessary, without loss of generality we can assume that Û is the same
neighbourhood for all x̂j and gj .
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Furthermore, recalling (2.39), we obtain

∂[γ](f) =
k∑
j=1

vj
∂F

∂xj
(0) =

k∑
j=1

vj
∂

∂xj

∣∣∣
x=0

(
f(m) +

k∑
i=1

xiGi(x)
)

=
k∑
j=1

vj

(
0 +

k∑
i=1

δijGi(0)
)

=
k∑
j=1

vj gj(m).

Comparing this with (2.46), we conclude that ∂(f) = ∂[γ](f) holds for any f ∈ C∞(M).
Hence, ∂ = ∂[γ], which finishes the proof of this step and the proof of this proposition too. �

We use the bijective map of Proposition 2.42 to identify TmM withDermM . SinceDermM
is clearly a vector space, we obtain the structure of a vector space on TmM in this way. Also, in
view of this identification, we drop the notation DermM in favour of TmM and we will switch
freely between the two interpretations of tangent vectors as classes of curves and derivations.

Proposition 2.47. For any m ∈ M the tangent space TmM is a vector space of dimension
k = dimM .

Proof. Pick a chart (U,ϕ), ϕ = (x1, . . . , xk) centered at m as in the proof of Proposition 2.38.
For each j = 1, . . . , k define a curve γj by

ϕ ◦ γj(t) = (0, . . . , 0, t, 0, . . . , 0),

where the only non-trivial component is on the jth place. Correspondingly, we have k derivations:

∂j := ∂[γj ].

Notice that if F is the coordinate representation of f , we have

∂j(f) =
d

dt

∣∣∣
t=0
f ◦ γj (t) =

d

dt

∣∣∣
t=0
F (0, . . . , 0, t, 0, . . . , 0) =

∂F

∂xj
(0).

We want to show that ∂1, . . . , ∂k is a basis of TmM .
To show that ∂1, . . . , ∂k are linearly independent, assume there are some real numbers

λ1, . . . , λk such that λ1 ∂1 + · · ·+ λk ∂k = 0, that is

λ1 ∂1(f) + · · ·+ λk ∂k(f) = 0

holds for any f ∈ C∞(M). Substituting f = xj in the above equality3, we obtain λj = 0.
Hence, ∂1, . . . , ∂k are linearly independent indeed.

Let us show that any derivation ∂ at m can be represented as a linear combination of
∂1, . . . , ∂k. By Proposition 2.42, there exists a curve γ throughm such that ∂ = ∂[γ]. If β = ϕ◦γ

is a coordinate representation of γ and v = β̇(0), then

∂(f) = DvF =
∑

vj
∂F

∂xj
(0) =

∑
vj ∂j(f).

Hence, ∂ = v1 ∂1 + · · ·+ vk ∂k. �
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Notice that the proof of the above proposition yields in fact a basis of TmM for any choice
of a chart (U,ϕ) such that m ∈ U . In fact, we have shown that ∂1, . . . , ∂k is a basis of TmM ,
where

∂jf =
∂

∂xj

∣∣∣
x=ϕ(m)

(
f ◦ ϕ−1(x)

)
. (2.48)

L 3
Also, in the particular case M = Rk the proof of Proposition 2.42 shows that we have a

canonical isomorphism

TmRk → Rk, ∂ 7→
(
∂(x1), . . . , ∂(xk)

)
. (2.49)

Indeed, denote vj = ∂(xj) and v = (v1, . . . , vk). Assuming m is the origin and writing F (x) =
F (0) +

∑
xjGj(x) as in (2.44), we obtain

∂(F ) = ∂
(
F (0)

)
+

k∑
j=1

(
∂(xj)Gj(0) + xj(0)∂(Gj)

)
=

k∑
j=1

vj
∂F

∂xj
(0) = DvF (0)

Hence, if v = 0, then ∂(F ) = 0 for all F ∈ C∞(Rk). In other words, (2.49) is injective. This
map is also surjective, since the image of ∂ = Dv equals v.

This isomorphism is particularly clear, if we interpret tangent vectors as classes of curves.
Indeed, if ∂ = ∂[γ], then ∂[γ](xj) = γ̇j(0) so that (2.49) becomes

[γ] 7→ γ̇(0). (2.50)

Example 2.51. Let f : Rk+1 → R be a smooth function. Assume that 0 is a regular value of f .
We shall show below that

M := f−1(0)

is a smooth k-manifold. Taking this as granted for now, we can ask the following question:
Given m ∈M , can we describe the tangent space TmM more explicitly?

Notice that we have a natural linear map

ı : TmM → DermRk+1 ∼= Rk+1, ı(∂)h = ∂
(
h
∣∣
M

)
. (2.52)

If a tangent vector is interpreted as a class of curves, then we have

ı
(
∂[γ]

)
=
(
∂[γ](x1), . . . , ∂[γ](xk+1)

)
= γ̇(0) or ı

(
[γ]
)

= γ̇(0). (2.53)

This map is injective but not surjective. Indeed, viewing γ as a curve in Rk+1, this satisfies
f
(
γ(t)

)
= 0 for all t. By differentiating this equation with respect to t, we obtain〈

∇f(m), γ̇(0)
〉

= 0.

Hence, γ̇(0) lies in the orthogonal complement to ∇f(m). Since dimTmM = dimM = k =

dim
(
∇f(m)

)⊥, we obtain
ı(TmM) =

(
∇f(m)

)⊥
.

Typically, this is expressed simply as TmM =
(
∇f(m)

)⊥.
An interested reader may find the following exercise to be instructive: Show that the image

of (2.52) equals
(
∇f(m)

)⊥ directly, that is without using Proposition 2.42.
3Technically, we should first fix an “extension” x̂j of xj as a in the proof of Proposition 2.42 above. However,

this should be clear by now and we will omit this sort of argument below.
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2.5 Cut off and bump functions
Recall that the function

λ : R→ R, λ(t) :=

{
0, if t ≤ 0,

e−
1
t , if t > 0

is smooth everywhere on R including t = 0.
Furthermore, notice that for any r > 0 we have λ(t) + λ(r − t) > 0 for any t ∈ R. Indeed,

for positive t the first term is positive and for negative t the second one is positive. Using this
we define the function

χ̂r(t) :=
λ(r − t)

λ(t) + λ(r − t)
,

where r > 0 is a parameter. Notice that χ̂r is smooth everywhere on R, takes values in [0, 1],
χr(t) = 0 for t ≥ r, and χr(t) = 1 for all t ≤ 0. It is convenient to define

χr(t) := χ̂r(t− 1) =
λ(r + 1− t)

λ(t− 1) + λ(r + 1− t)
, (2.54)

which is called a cut off function. The graph of χr is shown schematically on Figure 2.1 below.

χr

t

1 + r

1

1

Figure 2.1: Graph of χr.

Proposition 2.55. For any point m0 on M and any neighbourhood U 3 m0 there exists a
neighbourhood V ⊂ U and a smooth function ρ : M → [0, 1] such that

ρ
∣∣
V
≡ 1 and ρ

∣∣
M\U ≡ 0.

Proof. Pick a chart centered at m0. Without loss of generality, we can assume that the local
homeomorphism ϕ is defined everywhere on U . We can findR > 0 such that the ballB2R(0) :=
{x ∈ Rk | |x| < 2R} is contained in ϕ(U).

Furthermore, the function

ρ̂(x) = χ1

(
|x|
R

)
is smooth, equals 1 on BR(0) and vanishes outside of B2R(0). Hence,

ρ(m) =

{
ρ̂
(
ϕ(m)

)
, if m ∈ U,

0, otherwise,
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is a well-defined smooth function, which equals 1 on ϕ−1
(
BR(0)

)
and vanishes outside of

ϕ−1
(
B2R(0)

)
. �

The function ρ provided by the above proposition is called a bump function.
With these preliminaries at hand, we are ready to prove Proposition 2.41.

Proof of Proposition 2.41. Let V and ρ be as in Proposition 2.55. The function

f̂(m) =

{
f(m) · ρ(m) if m ∈ U
0 otherwise,

has the required properties. This proves (i).
Let us prove (ii). We can assume that V ⊂ Û and, moreover, that ρ vanishes outside of Û .

Then the function (f̂ − f) · ρ vanishes everywhere and therefore for any derivation ∂ at m0 we
have

0 = ∂
(
(f̂ − f) · ρ

)
= ∂(f̂ − f) · ρ(m0) +

(
f̂(m0)− f(m0)

)
∂(ρ) = ∂(f̂)− ∂(f).

This proves (ii). �

Exercise 2.56. Show that the open ball

B :=
{
x ∈ Rk | |x| < 1

}
in Rk is diffeomorphic to Rk. Deduce from this that any point on a manifold admits a chart
(U,ϕ) such thatϕ : U → Rk is a diffeomorphism. (Hint: Show first that there is a diffeomorphism
f : (0, 1)→ (0,∞) such that f(r) = r for all r ≤ r0 < 1.)

2.6 The differential of a smooth map
Let f : Mk → N ` be a smooth map between two smooth manifolds.

Definition 2.57. For any m ∈M the map

f∗(m) : TmM → Tf(m)N defined by f∗(p)[γ] = [f ◦ γ]

is called the differential of f at the point m. Here γ is a smooth curve through m.

Think of a tangent vector atm ∈M as a derivation ∂ atm. By Proposition 2.42, there exists
a smooth curve γ through m such that ∂ = ∂[γ]. Then we have ∂f∗(m)[γ] = ∂[f◦γ]. Hence, for any
h ∈ C∞(N) we obtain

∂f∗(m)[γ](h) = ∂[f◦γ](h) =
d

dt

∣∣∣
t=0

(
h ◦ (f ◦ γ)

)
(t) =

d

dt

∣∣∣
t=0

(
(h ◦ f) ◦ γ

)
(t) = ∂[γ]

(
h ◦ f

)
.

Hence, thinking of tangent vectors at m as derivations at m we can identify the differential of f
at m with the map

∂ 7→ f∗∂, where
(
f∗∂

)
h = ∂

(
h ◦ f

)
. (2.58)

More precisely, this means that the following diagram commutes:

TmM
f∗(m)−−−−→ Tf(m)Ny y

DermM
f∗(m)−−−−→ Derf(m)N.
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Here the vertical arrows are given by (2.43), the upper horizontal arrow represents the differential
of f in the sense of Definition 2.57, whereas the lower arrow represents (??).

Since (2.58) is obviously a linear map, we obtain the following.

Proposition 2.59. The differential is a linear map. �

Pick a chart (U,ϕ) on M centered at m and a chart (V, ψ) on N centered at f(m) ∈ V .
Write ϕ = (x1, . . . , xk) and ψ = (y1, . . . , y`), where xi are functions on U and yj are functions
on V just like in the proof of Equation 2.43. By the proof of Proposition 2.47, we obtain the
following bases(

∂x1 , . . . , ∂
x
k

)
=
( ∂

∂x1

, . . . ,
∂

∂xk

)
and

(
∂y1 , . . . , ∂

y
`

)
=
( ∂

∂y1

, . . . ,
∂

∂y`

)
. (2.60)

It is worthwhile to recall that ∂xi g = ∂G
∂xi

(0), where G = g ◦ϕ−1 is the coordinate representation
of g.

Since the differential is a linear map, this can be represented by a matrix relative to the above
bases. Thus, a natural question arises: Can we compute the matrix of the differential relative to
Bases (2.60)?

To answer this question, recall that the coordinate representation of f is

F = ψ ◦ f ◦ ϕ−1 : Rk → R`. (2.61)

Pick any smooth function h onN and consider its coordinate representationH := h◦ψ−1. Then
the coordinate representation of the function g := h ◦ f is

G = g ◦ ϕ−1 = h ◦ f ◦ ϕ−1 = h ◦ ψ−1 ◦ ψ ◦ f ◦ ϕ−1 = H ◦ F.

In other words,
G(x) = H

(
F1(x), . . . , F`(x)

)
,

where F =
(
F1, . . . , F`

)
. Hence, we compute:

∂xi g =
∂G

∂xi
=
∑̀
j=1

∂H

∂yj

∂Fj
∂xi

=
∑̀
j=1

∂Fj
∂xi

∂yj h,

where all partial derivatives are computed at the origin, however we suppressed this in the
notations to keep those simple. In other words

f∗(m) ∂xi =
∑̀
j=1

∂Fj
∂xi

∂yj ⇐⇒ f∗(m)∂x = ∂y ·DF,

where in the last equation ∂x = (∂x1 , . . . , ∂
x
k ) is interpreted as a k-tuple of vectors in TmM and,

similarly, ∂y = (∂y1 , · · · ∂
y
` ); Moreover,

DF =

∂F1

∂x1
. . . ∂F1

∂xk

∂F`
∂x1

. . . ∂F`
∂xk


is the Jacobi matrix of F (evaluated at the origin). Thus, our computation shows that the
following result holds.
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Proposition 2.62. Let f : Mk → N ` be a smooth map between two smooth manifolds. Pick
charts

(
U,ϕ = (x1, . . . , xk)

)
and

(
V, ψ = (y1, . . . , y`)

)
centered at m and f(m) respectively.

Denote by F the coordinate representation of f , i.e., F = ψ ◦ f ◦ϕ−1. Then the matrix of f∗(m)
with respect to Bases (2.60) is given by the Jacobi matrix of F . �

We finish this section by the following result.

Proposition 2.63. For any two smooth maps f : M → N and g : N → K between smooth
manifolds, we have

(g ◦ f)∗(m) = g∗
(
f(m)

)
◦ f∗(m).

Proof. The proof follows directly from the definition of the differential. Indeed, for any smooth
curve γ through m, we have

(g ◦ f)∗[γ] = [(g ◦ f) ◦ γ] = [g ◦ (f ◦ γ)] = g∗
(
f(m)

)
[f ◦ γ] = g∗

(
f(m)

) (
f∗(m)[γ]

)
.

This immediately implies the statement of this proposition. �

Exercise 2.64. Let A : Rk → Rk be a linear map. Show that the differential of A at any point
can be identified with A itself. More precisely, this means that the diagram

Rk A∗(x)−−−−→ Rk

Ψ

y yΨ

Rk A−−−→ Rk

commutes for any x ∈ Rk, where Ψ denotes the canonical isomorphism TxRk → Rk given
by (2.49), or, equivalently, by (2.50).

L 4
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Chapter 3

Submanifolds and partitions of unity

3.1 Submanifolds
Represent Rk+` as a product:

Rk+` = Rk × R`.

Corresponding to this representation, we have the following maps:

ı2 : R` → Rk+`, ı2(y) = (0, y),

π2 : Rk+` → R`, π2(x, y) = y,

where x ∈ Rk and y ∈ R`.
Let f : Rk+` → R` be a smooth map, which is defined on some neighbourhood U of the

origin. For any point p0 = (x0, y0) ∈ U we have the linear map

Dyf(p0) : R` ı2−−→ Rk+` Dp0f−−−−→ R`. (3.1)

For example, if k = ` = 1, we haveDyf(p0) = ∂f
∂y

(p0). For this reason, we call (3.1) the partial
derivative of f with respect to y (at the point p0).

To simplify the notations it is convenient to assume that p0 is the origin and f(0) = 0,
although this is immaterial.

Theorem 3.2. If Dyf(0) is an isomorphism, then there exists a smooth map θ : Rk+` → Rk+`,
which is a local diffeomorpism at 0, such that θ(0) = 0 and

f ◦ θ = π2

holds in a neighbourhood of the origin.

Proof. Define
g : Rk+` → Rk+` by g(x, y) :=

(
x, f(x, y)

)
. (3.3)

Then for the differential of g we have

Dg(0) =

(
idRk 0

Dxf(0) Dyf(0)

)
⇐⇒ Dg(0)

(
u
v

)
=

(
u

Dxf(0)u+Dyf(0)v

)
,

where u ∈ Rk and v ∈ R`.

23
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If (u v) ∈ kerDg(0), then u = 0 and Dyf(0)v = 0. However, Dyf is an isomorphism
by assumption of this theorem, so that v = 0. Therefore, Dg(0) is injective and, hence, an
isomorphism.

By Theorem 2.24, there is a local inverse θ : Rk+` → Rk+` to g, that is in a neighbourhood
of the origin we have

g ◦ θ = idRk+` =⇒ π2 = π2 ◦ idRk+` = π2 ◦ g ◦ θ = f ◦ θ.

Thus, the theorem is proved. �

Corollary 3.4 (The implicit function theorem). Suppose that the assumptions of Theorem 3.2
hold. Then there exists a neighbourhood V1 of 0 ∈ Rk, a neighbourhood V2 of 0 ∈ R`, and a
unique smooth map h : V1 → V2 such that

f(x, y) = 0 ⇐⇒ y = h(x) (3.5)

whenever (x, y) ∈ V1 × V2.
Furthermore, denoting W := f−1(0) ∩ V1 × V2, the map

ψ := π1

∣∣
W

: W → V1, (x, y) 7→ x

is a homemorphism, that is (W,ψ) is a chart on f−1(0) ∩ U .

Proof. Let θ : U → θ(U) be the local diffeomorphism provided by Theorem 3.2. Pick any open
subsets V1 and V2 as in the formulation of the theorem such that V1×V2 ⊂ U . For x ∈ V1 define
h(x) := π2 ◦ θ (x, 0). Furthermore, for (x, y) ∈ V1 × V2, denote

(z, w) := θ−1(x, y) = g(x, y) =
(
x, f(x, y)

)
.

Here we used the fact, that g, which is given by (3.3), is the inverse of θ. Then

f(x, y) = 0 =⇒ 0 = f ◦ θ ◦ θ−1(x, y) = f ◦ θ (z, w) = w

=⇒ (z, 0) =
(
x, f(x, y)

)
.

Hence, z = x and (x, y) = θ(x, 0), which yields in turn y = h(x).
Furthermore, for any x ∈ V1 we have

(x, 0) = g ◦ θ (x, 0) = g
(
π1 ◦ θ (x, 0), π2 ◦ θ(x, 0)

)
From the definition of g we obtain x = π1 ◦ θ (x, 0) and, hence, 0 = f

(
x, h(x)

)
.

To show the uniqueness, notice that

f
(
x, h(x)

)
= 0 =⇒ g

(
x, h(x)

)
=
(
x, f

(
x, h(x)

))
= (x, 0)

f
(
x, ĥ(x)

)
= 0 =⇒ g

(
x, ĥ(x)

)
= (x, 0).

Since g is a local diffeomorphism, we obtain h(x) = ĥ(x) provided x is sufficiently close to the
origin.

Furthermore, notice that the map

V1 → W, x 7→
(
x, h(x)

)
is a continuous inverse of ψ. Hence, ψ is a homeomorphism. �
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Remark 3.6. The hypothesis of Corollary 3.4 implies that the differential of f at the origin is
surjective. In fact, the surjectivity of the differential is decisive in Theorem 3.2 and Corollary 3.4,
whereas the hypothesis that Dyf(0) is an isomorphism can be achieved by a linear change of
coordinates, see the proof of Theorem 3.10 below for some details.

The proofs of Theorem 3.2 and Corollary 3.4 show that there is a chart (U,ϕ) on Rk+` such
that ϕ

(
U ∩N

)
⊂ Rk × {0}. This motivates the following.

Definition 3.7. Let N be a manifold of dimension k + `. A subset M ⊂ N is said to be a
submanifold of dimension k (or k-subamnifold), if for each point m ∈ M there exists a chart
(U,ϕ) on N centered at m such that

ϕ
(
U ∩N

)
= ϕ(U) ∩

(
Rk × {0}

)
(3.8)

holds. Under these circumstances, the chart (U,ϕ) is said to be adapted to M .

Notice that if (U,ϕ) is an adapted chart, then (M ∩ U, ψ) is a chart on M , where

ψ : = π1 ◦ ϕ
∣∣
U∩M : U ∩M → Rk.

Proposition 3.9. A k-submanifold is a smooth k-manifold.

Proof. By its very definition, a k-submanifold is equipped with a C0-atlas U , consisting of
restrictions of all adapted charts.

I claim that this atlas is in fact smooth. Indeed, let (U1, ϕ1) and (U2, ϕ2) be two charts
adapted to M . Denoting by ı1 : Rk → Rk+` the inclusion ı1(x) = (x, 0), we have

ψ1 ◦ ψ
−1
2 (x) = ψ1

(
ϕ−1(x, 0)

)
= π1 ◦ ϕ1 ◦ ϕ

−1
2
◦ ı1 (x) = π1 ◦ θ12 ◦ ı1 (x).

Thus, U is smooth. �

We are now in the position to state one of the central theorems of this chapter.

Theorem 3.10. Let M and N be smooth manifolds. If n is a regular value of a smooth map
f : M → N and dimM ≥ dimN , then f−1(n) is a submanifold of M of dimension k :=
dimM − dimN .

Proof. Denote
` = dimN =⇒ dimM = k + `.

Pick any m ∈ f−1(n) and any charts (U,ϕ) and (V, ψ) centered at m and n respectively.
Let F = ψ ◦ f ◦ ϕ−1 be the coordinate representation of f with respect to the charts (U,ϕ) and
(V, ψ). Since ϕ and ψ are diffeomophisms, we obtain that the differential F∗ of F is surjective
at the origin (in fact, at any point from F−1(0)). In particular, dim kerF∗(0) = k.

Choose a basis (v1, . . . , vk+`) of Rk such that (v1, . . . , vk) is a basis of kerF∗(0). Set

A : Rk+` → Rk+`, z 7→
k+∑̀
j=1

zjvj.

Notice that by the definition of A and elementary facts from linear algebra, the following holds:

• A is an isomorphism;

• A ◦ ı1 : Rk → kerF∗(0) is an isomorphism;
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• F∗(0) ◦ A ◦ ı2 : R` → R` is an isomorphism.

Furthermore, consider the map G := F ◦ A : Rk+` → R`. By Exercise 2.64, we have

G∗(0) = F∗(0) ◦ A =⇒ DyG = F∗(0) ◦ A ◦ ı2.

Since the letter map is an isomorphism, by the proofs of Theorem 3.2 and Corollary 3.4 we
obtain a chart (W, ξ) on Rk+` adapted to G−1(0), that is

ξ
(
W ∩G−1(0)

)
= ξ(W ) ∩

(
Rk × {0}

)
.

Without loss of generality we can assume that W is contained in A−1
(
ϕ(U)

)
.

Various charts involved in the proof are shown schematically on Figure 3.1.

Figure 3.1: Scheme of the proof of Theorem 3.10.

Define a chart (Ŵ , ξ̂ ) on Rk+` by

(Ŵ , ξ̂ ) =
(
A−1(W ), ξ ◦ A−1

)
.
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Since z ∈ G−1(0) ⇔ Az ∈ F−1(0), we obtain

ξ̂
(
Ŵ ∩ F−1(0)

)
= ξ
(
W ∩G−1(0)

)
= ξ(W ) ∩

(
Rk × {0}

)
.

Finally, setting

ϕ1 := ξ̂ ◦ ϕ and U1 = ϕ−1
1

(
ξ̂(Ŵ )

)
= ϕ−1

(
Ŵ
)

we obtain

ϕ1

(
U1 ∩ f−1(n)

)
= ξ̂
(
Ŵ ∩ F−1(0)

)
= ξ(W ) ∩

(
Rk × {0}

)
= ϕ1(U1) ∩

(
Rk × {0}

)
.

Thus, (U1, ϕ1) is a chart adapted to f−1(n) at m. �

Notice the following: If dimM < dimN , then n is a regular value of smooth map f : M →
N if and only if n /∈ Im f , see the paragraph following Definition 2.28. In this case f−1(n) = ∅
is also (by definition) a smooth manifold. Thus, the condition dimM ≥ dimN can be dropped
in the formulation of Theorem 3.10.

Proposition 3.11. In the setting of Theorem 3.10, for any m ∈ f−1(n) we have

Tmf
−1(n) = ker f∗(m).

Proof. Pick any curve γ in f−1(n) through m. Since γ lies in the level set of f , we have

f ◦ γ (t) = n for all t ∈ (−ε, ε). (3.12)

Since the constant curve t 7→ n represents the zero vector in TnN , by the definition of the
differential of f and (3.12) we obtain f∗(m)

(
[γ]
)

= 0. In other words any vector [γ] tangent to
f−1(n) lies in the kernel of f∗(m). �

Example 3.13.

(i) Consider the map f : Rn+1 → R, f(x) = |x|2. Then 1 is a regular value of f . In
particular, Sn = f−1(1) is a manifold of dimension n. Of course, the reader knows this
fact by now very well.

(ii) Let Mn(R) be the space of all n× n matrices with real entries. One can show that 1 is a
regular value of the function det : Mn(R)→ R, A 7→ detA. Consequently,

SLn(R) :=
{
A ∈Mn(R) | detA = 1

}
is a manifold of dimension dimMn(R)− 1 = n2 − 1.

Let us compute the tangent space to SLn(R) at the point 1. To this end, it is convenient
to identify Mn(R) with Rn2 . Recalling that

detA =
∑
σ

signσ a1σ(1) . . . anσ(n),

where σ runs through all permutations of the set { 1, . . . , n }, for any B ∈ Mn(R) we
obtain

det
(
1 + tB

)
= (1 + t b11)(1 + t b22) . . . (1 + t bnn)

+
∑
σ 6=id

signσ
(
δ1σ(1) + tb1σ(1)

)(
δ2σ(2) + tb2σ(2)

)
. . .
(
δnσ(n) + tbnσ(n)

)
.
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Notice that for any σ 6= id, σ(i) 6= i at least for two values of i. Hence, the last term in
the above expression is o(t). This yields

det
(
1 + tB

)
=
(
1 + t trB + o(t)

)
+ o(t).

Consequently, det∗(1)B = trB and therefore

T1SLn(R) =
{
B ∈Mn(R) | trB = 0

}
.

(iii) Let Symn(R) ⊂ Mn(R) denote the subspace of all symmetric matrices. One can show
that the identity matrix 1 ∈ Symn(R) is a regular value of the map

f : Mn(R)→ Symn(R), f(A) = A · At. (3.14)

Consequently,

O(n) :=
{
A ∈Mn(R) | A · At = 1

}
is a manifold and

dimO(n) = dimMn(R)− dimSymn(R) = n2 − n(n+ 1)

2

=
n(n− 1)

2
.

Notice that if we would consider (3.14) as a map Mn(R)→Mn(R), then 1 would not be
a regular value.

Just like in the case of SLn(R), let us compute the tangent space to O(n) at the point 1.
We have

f(1 + sB) = (1 + sB) · (1 + sB)t = 1 + s
(
B +Bt

)
+ o(s).

Hence, f∗(1)B = B +Bt and

T1O(n) =
{
B ∈Mn(R) | Bt = −B

}
.

We finish this section by Sard’s theorem, which, loosely speaking, says that for any smooth
map almost any point is a regular value. More precisely, we say that a subset A of a smooth
k-manifold M is of measure zero, if for any chart (U,ϕ) on M the set ϕ

(
A ∩ U

)
⊂ Rk is of

measure zero.

Theorem 3.15 (Sard). Let f : M → N be a smooth map between smooth manifolds. Then
almost any point n ∈ N is a regular value of f , that is the set of critical values for f is of
measure zero. �

A proof of Sard’s theorem can be found for example in [BT03, 9.4] or [Mil65, §3]. L 5

Draft 28 January 17, 2022



Differential Geometry I

3.2 Immersions and embeddings

Just like maps with surjective differentials can be conveniently described as projections after
applying a diffeomorphisms, the maps with injective differentials admit an analogous description.

Theorem 3.16. Let U be an open subset of Rk containing the origin and f : U → Rk × R` be
a smooth map such that f(0) = 0 and

f1 ∗(0) : Rk → Rk, where f1 := π1 ◦ f,

is an isomorphism. Then there exists a neighbourhood V ⊂ Rk+` of the origin and a diffeomor-
phism θ : V → θ(V ) ⊂ Rk+` such that θ ◦ f = ı1 and θ

(
V ∩ f(U)

)
= θ(V ) ∩

(
Rk × {0}

)
.

Proof. The proof of this theorem is similar to the proof of Theorem 3.2.
Thus, consider the map

F : U × R` → Rk+` = Rk × R`, F (x, y) := f(x) + (0, y) =
(
f1(x), f2(x) + y

)
.

The differential of this map

F∗(0) =

(
f1∗(0) 0

f2∗(0) idR`

)
is an isomorphism. Hence, there exists a neighbourhood V of the origin and a diffeomorphism
θ : V → θ(V ) such that

θ ◦ F = idθ(V ).

In particular, for any (x, 0) ∈ θ(V ) the above equality yields:

θ ◦ F (x, 0) = θ ◦ f(x) = ı1(x) =⇒ θ ◦ f = ı1.

Hence, θ(V ) ∩
(
Rk × {0}

)
⊂ θ
(
V ∩ f(U)

)
.

To show the converse inclusion, let (x, y) ∈ θ
(
V ∩f(U)

)
. Hence, there exists some (z, w) ∈

V ∩ f(U) such that (x, y) = θ(z, w). In this case we must have (z, w) = f(x) for some x ∈ U
and therefore

(x, y) = θ(z, w) = θ ◦ f(x) = (x, 0).

Thus, y = 0 and (x, 0) ∈ V , which yields θ
(
V ∩ f(U)

)
⊂ θ(V ) ∩

(
Rk × {0}

)
. �

Definition 3.17. A smooth map f : Mk → N ` such that f∗(m) is injective at each pointm ∈M
is called an immersion. An immersion, which is a diffeomorphism onto a k-submanifold of N ,
is called an embedding.

Clearly, an immersion of f : M → N can exists only if dimM ≤ dimN . Notice also, that
by Theorem 3.16 each immersion is locally injective, however an immersion does not need to
be globally injective. Even if an immersion is injective, this may fail to be an embedding. This
is shown schematically on Fugures 3.2 and 3.3 below. In particular, the image of an immersion
does not need to be a submanifold.
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Figure 3.2: The image of a non-injective
immersion R→ R2.

Figure 3.3: The image of an injective
immersion R → R2, which is not an
embedding.

Proposition 3.18. An immersion which is a homeomorphism onto its image is an embedding.

Proof. Denote k := dimM and ` := dimN . The proof consists of the following 3 steps.

Step 1. For any m ∈ M there exists a chart (V, ψ) on N centered at n := f(m) with the
following properties:

• ψ1∗(n)
∣∣
Im f∗(m)

: Im f∗(m) → Rk is an isomorphism, where ψ1 = π1 ◦ ψ and π1 : R` =

Rk ⊕ R`−k → Rk is the projection.

• There exists a neighbourhood U of m such that f(U) = V ∩ f(M).

Since f is a homeomorphism onto its image, f : M → f(M) is an open map. In particular,
for any open Û ⊂ M there exists an open subset V̂ ⊂ N such that f(Û) = V̂ ∩ f(M). If Û is
a neighbourhood of m, we can choose a chart (V, ξ) centered at n such that V ⊂ V̂ .

Furthermore, since ξ∗ : TnN → R` is an isomorphism and Im f∗(m) is a k-dimensional
subspace of TnN , we can find a linear isomorphism A : R` → R` such that

A
(
ξ∗
(

Im f∗(n)
))

= Rk × {0}.

Then (V, ψ) = (V, A ◦ ξ) is the required chart. Also, setting U := f−1(V ) we obtain f(U) =
V ∩ f(M).

Step 2. f(M) is a submanifold of N .

Pick anym ∈M and a chart (U,ϕ) centered atm. Pick also a chart (V, ψ) as in the previous
step. Denote also W := ψ(V ) ⊂ R`.

Let F = ψ ◦f ◦ϕ−1 be the coordinate representation of f . Denoting F1 := π1 ◦F : Rk → Rk,
we have

F1∗(0) = π1∗(0) ◦ F∗(0) = π1∗(0) ◦ ψ∗(n) ◦ f∗(m) ◦ ϕ−1
∗ (0) = ψ1∗(0) ◦ f∗(m) ◦ ϕ−1

∗ (0)

Since ϕ−1
∗ (0) is an isomorphism, by Step 1 we obtain that F1∗(0) is injective. Hence, F1∗(0) is

an isomorphism. Hence, by Theorem 3.16 we can find a diffeomorphism1 θ : W → θ(W ) ⊂ R`

such that
θ ◦ F = ı1 ⇐⇒

(
θ ◦ ψ

)
◦ f ◦ ϕ−1 = ı1

1Without loss of generality we may assume that V was chosen so that θ is defined everywhere on W .
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Denote ψ̂ := θ ◦ ψ. Then (W, ψ̂) is a chart on N adapted to f(M).

Step 3. f is a diffeomorphism between M and f(M).

Let (U,ϕ) and (W, ψ̂) be as in the preceding step. By the construction of ψ̂, the coordinate
representation of f is ψ̂ ◦ f ◦ϕ−1 = ı1 : Rk → R`. Since the restriction of π1 ◦ψ to f(M)∩W is
a chart on f(M), the coordinate representation of f viewed as a map f : M → f(M) is given
by

π1 ◦ ψ̂ ◦ f ◦ ϕ
−1 = π1 ◦ ı1 = id.

Hence, f is a local diffeomorphism. Since f : M → f(M) is bijective, this is a diffeomorphism.
�

Corollary 3.19. If M is compact, then any injective immersion f : M → N is an embedding.

Proof. Pick a closed subset A ⊂M . Since A is closed in M , A is compact and therefore f(A)
is compact in N . Since N is Hausdorff, f(A) is closed. Hence, f is a closed map, i.e., the
image of any closed subset is closed. This means that f−1 : f(M) → M is continuous, that is,
f : M → f(M) is a homeomorphism. The statement of this corollary now follows immediately
from Proposition 3.18. �

Theorem 3.10 combined with Sard’s theorem allows us to construct many smooth manifolds,
which are in fact submanifolds of Euclidean spaces. It turns out that any smooth manifold can
be realized as a submanifold of an Euclidean space.

Theorem 3.20 (Whitney’s embedding theorem). For any smooth manifold M there is an em-
bedding of M into Rn for some n ∈ N.

Proof. We prove Whitney’s embedding theorem only in the case when M is compact.
For any m ∈ M choose a chart (Um, ϕm). Pick also open neigbourhoods Wm ⊂ Vm and a

bump function ρm such that the following holds:

• V m ⊂ Um;

• ρm
∣∣∣
Wm

≡ 1 and ρm < 1 outside of Wm;

• ρm vanishes outside of Vm.

Since M is compact, there is a finite subset {m1, . . . ,mp } of M such that
{
Wi

}
cover all

of M , where Wi := Wmi . Consider each ψi := ρi · ϕi := ρmi · ϕmi as a smooth map M → Rk

(extended by zero outside of Vm), where k = dimM . Finally, define

f : M → Rpk+p, f(m) =
(
ψ1(m), . . . , ψp(m), ρ1(m), . . . , ρp(m)

)
.

Clearly, f is smooth. I claim that this map is also injective. Indeed, pick any two distinct
points m and m̂. Without loss of generality, we can assume m ∈ W1. If m̂ ∈ W 1, then
ψ1(m) = ϕ1(m) 6= ϕ1(m̂) = ψ1(m̂). If m̂ /∈ W 1, then 1 = ρ1(m) 6= ρ1(m̂), so that f is
injective indeed.

Furthermore, assuming m ∈ W1 again, ψ1∗(m) : TmM → Rk is an isomorphism. Hence,
f∗(m) : TmM → Rkp+p is injective at any m ∈M . By Corollary 3.19, f is an embedding. �
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Whitney’s embedding theorem shows that any (abstract) manifold M can be thought of as
a submanifold of an Euclidean space. In other words, we could have defined manifolds as the
subspaces of Euclidean spaces admitting charts2 at each point. Some authors do take this point
of view arguing that this yields the same pool of examples. While it is true of course that this
would yield the same pool of examples, manifolds often do not arise as subsets of Euclidean
spaces. For example, the real projective space is not obviously contained in any Euclidean space
(and it is even not so obvious how to construct an embedding). Even if one decides to work with
the submanifolds only, one finds out pretty soon that certain useful constructions, for example
taking quotients by group actions, are incompatible with this setting. More importantly, it is
useful to distinguish “inner” properties of manifolds from those of an embedding. All these
reasons led to the necessity to separate abstract manifolds from their particular realizations as
submanifolds.

3.3 Partitions of unity
Let f : M → R be a (continuous) map.

Definition 3.21. The set
supp f :=

{
m ∈M | f(m) 6= 0

}
is called the support of f . In other words, supp f is the closure of the set, where f does not
vanish.

Example 3.22.

(i) For f : R→ R, f(x) = x we have supp f = R.

(ii) For the cut off function (2.54) we have suppχr = (−∞, 1 + r].

(iii) For the bump function ρ̂ : Rk → R, ρ̂(x) = χ1(|x|) we have

supp ρ̂ =
{
x ∈ Rk | |x| ≤ 2

}
.

Definition 3.23. A family of functions
{
ρα : M → R≥0 | α ∈ A

}
, where A is an index set, is

called a partition of unity, if the following holds:

(i) The family {supp ρα | α ∈ A } is locally finite, that is for each m ∈ M there exists a
neighbourhood W 3 m such that the set {α ∈ A | W ∩ supp ρα 6= ∅ } is finite;

(ii) For each m ∈M we have ∑
α∈A

ρα(m) = 1. (3.24)

Furthermore, a partition of unity {ρα } is said to be subordinate to a covering {Uβ | β ∈ B }, if
for each α ∈ A there exists some β = β(α) such that supp ρα ⊂ Uβ(α).

Notice that (i) implies that for each m ∈ M the set {α | ρα(m) 6= 0} is finite so that (3.24)
is a finite sum.

Any manifold trivially admits a partition of unity consisting of a single constant function.
To obtain a non-trivial example, consider M = R and the family

{
ρ̂j | j ∈ Z

}
, where

ρ̂j : R→ R, ρ̂j(x) = χ1

(
|x− j|

)
. (3.25)

2More precisely, admitting adapted charts.
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In particular, ρ̂j equals 1 everywhere on the interval [j − 1, j + 1] and supp ρ̂j = [j − 2, j + 2].
Hence, the function

ρ̂(x) :=
∑
j∈Z

ρ̂j(x)

is well-defined and positive everywhere on R. Therefore,
{
ρj := ρ̂j/ρ̂ | j ∈ Z

}
is a partition

of unity on R. This partition of unity is subordinate for example to the following coverings:{
(j − 3, j + 3) | j ∈ Z

}
and

{
(−j, j ) | j ∈ N

}
.

L 6

Theorem 3.26 (Existence of Partition of Unity). Given an open covering U on a manifold, there
is a partition of unity subordinate to U .

Proof. We prove this theorem only under a simplifying hypothesis that the manifold M under
consideration is compact.

Thus, pick any point m ∈ M and a set Uβ(m) ∈ U containing m. By Proposition 2.55,
there exist a neighbourhood Vm ⊂ Uβ(m) and a bump function ρ̂m such that ρ̂m ≡ 1 on Vm and
supp ρ̂m ⊂ Uβ(m).

Since M is compact, we can choose a finite subset {m1, . . . ,mp } such that {V1, . . . , Vp } is
a covering of M , where Vj := Vmj . Redenoting ρ̂j := ρ̂mj , we obtain that

ρ̂(m) :=

p∑
j=1

ρ̂j(m)

is positive everywhere on M . Hence, {ρj := ρ̂j/ρ | j = 1, p } is a partition of unity on M .
Moreover, this is subordinate to U , since supp ρj = supp ρ̂j ⊂ Uβ(mj). �

A couple of remarks are in place here. First, a proof of the above theorem in full generality
can be found for example in [War83, 1.11] and uses the axiom of second countability, which
we have not really used so far. This is one of the main reasons that the manifolds are required
to be second countable.

Second, it is straightforward to generalize the definition of a smooth manifold to the complex
holomorphic setting. Namely, we could have defined a complex manifold as a (Hausdorf
second countable) topological space equipped with an atlas U :=

{
(Uα, ϕα) | α ∈ A

}
, where

ϕα : Uα → ϕα(U) ⊂ Ck is a homeomorphism, such that all transition maps

θαβ := ϕα ◦ ϕ
−1
β : Ck → Ck

are holomorphic. Most of the results we have seen so far are still valid in this setting (with
an obvious replacement of the adjective “smooth” by “holomorphic”), except, most notably,
Theorem 3.26 ( and related Theorem 3.20 and Proposition 2.55). The existence of the partition
of unity on smooth manifolds and its non-existence on complex manifolds gives these two
theories somewhat different flavours.

A typical application of the partition of unity is to existence questions, which we illustrate
on the following result.

Theorem 3.27. Let Mk ⊂ N ` be an embedded submanifold. Then for any h ∈ C∞(N) the
restriction of h to M is a smooth function on M . Conversely, any smooth function f on M
admits a smooth extension to N , that is there exists some h ∈ C∞(N) such that h

∣∣
M

= f .
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Proof. First notice that h
∣∣
M

= h ◦ ıM , where ıM : M → N is the embedding. The smoothness
of the restriction then follows from the smoothness of ıM .

Thus, given f ∈ C∞(M) we wish to find some h ∈ C∞(M) such that h
∣∣
M

= f . Let U be a
covering of M by adapted charts. For the covering UN := U ∪ {N \M} of N pick a partition
of unity {ρα } on N adapted to UN .

For each α define fα ∈ C∞(M) by

fα(m) := ρα(m) · f(m) =⇒ f =
∑
α

fα,

where at each point m ∈M only finitely many fα are not vanishing.
I claim that each fα admits an extension hα. First recall that if (U,ϕ) is an adapted chart,

then (U ∩M, ψ) is a chart on M , where ψ = π1 ◦ ϕ
∣∣
M

. Denoting by F = f ◦ ψ−1 the the
coordinate representation of f , define

Hα(x, y) := F (x) ·
(
ρα ◦ ϕ

−1
)
(x, y) and hα(n) :=

{
Hα ◦ ϕ (n) if n ∈ U,
0 otherwise.

Notice that Hα is a smooth function on R`, which vanishes outside of ϕ(U) so that ha is well-
defined and smooth. Moreover, the family {supphα | α ∈ A} is locally finite, since(

hα(n) 6= 0 =⇒ ρα(n) 6= 0
)

=⇒ supphα ⊂ supp ρα.

Therefore, we can define h(n) :=
∑

α hα(n), which is smooth, because in a neighbourhood
of each point h is a finite sum of smooth functions. For m ∈M , we have

h(m) =
∑
α

hα(m) =
∑
α

fα(m) = f(m).

Hence, h is a smooth extension of f . �
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Chapter 4

The tangent bundle and the group of
diffeomorphisms

4.1 Some elements of linear algebra
In what follows it may be useful to recall the following elements of linear algebra. Let V be
a linear vector space of dimension k. Any basis v = (v1, . . . , vk) of V gives rise to the linear
isomorphism

Rk → V, y 7→
k∑
j=1

yjvj = v · y. (4.1)

The very last term is a shortcut for the sum of the products on the left hand side and should
be understood as a matrix multiplication, where the first “matrix” v consists of 1 row and k
columns (and its entries are vectors from V ), whereas y is a matrix with k rows and 1 column,
i.e., y is just a column-vector.

Conversely, given a linear isomorphism Rk → V we can construct a basis of V just by
taking the image of the standard basis of Rk. This yields a bijective correspondence between
the set of all bases of V and the set of all isomorphisms Rk → V .

Furthermore, let w = (w1, . . . ,wk) be another basis of V . Then w and v are related by the
so called change-of-basis matrix B, which is obtained as follows. Decompose wi in terms of
the basis v, that is write

wi =
k∑
j=1

bijvj.

Then B =
(
bij
)

is the change-of-basis matrix between w and v. In terms of the matrix
multiplication used above, the relation between v, w, and B can be elegantly expressed as
follows:

w = v ·B.
Just to familiarize ourselves better with these notations, let ϕ : V → V be a linear map. The

reader knows that given a basis of V , say v, ϕ can be represented by a k × k-matrix A. This
means, that if (y1, . . . , yk) are coordinates of a vector v ∈ V , then the coordinates of ϕ(v) are
given by A · y (in this formula y is interpreted as a column-vector). An elementary computation
yields that the jth column of A consists of coordinates of ϕ(vj) with respect to v. In other
words, A can be characterized by the equality ϕ(v) = v · A. If w = v · B is another basis of V
as above, then we have

ϕ(w) = ϕ
(
v ·B) = ϕ(v) ·B = v · AB = w ·B−1AB.
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This yields that the matrix of ϕ with respect to the basis w is B−1AB. The reader surely
knows this fact from the linear algebra, however the typical proof of this boils down to a tedious
computation.

4.2 The tangent bundle
Consider the set

TM :=
⊔
m∈M

TmM,

which comes equipped with a map

π : TM →M, π(v) = m ⇔ v ∈ TmM.

For example, in the case M = Rk we can identify TmRk with Rk just as in (2.49) so that

TRk =
⊔
m∈Rk

TmRk = Rk × Rk and π = π1.

Furthermore, let (U,ϕ) be a chart onM . Write ϕ = (x1, . . . , xk) and recall that a each point
m ∈M we have constructed the following basis of TmM :

∂x
∣∣
m

:=
(
∂1, . . . , ∂k

)∣∣
m
, where ∂j

∣∣
m
f =

∂

∂xj

∣∣∣
x=ϕ(m)

(
f ◦ ϕ−1(x)

)
. (4.2)

See (2.48) and the proof of Proposition 2.47 for further details. Therefore, we obtain the
bijection

U × Rk → π−1(U) =
⊔
m∈U

TmM, (m, y) 7→
k∑
j=1

yj ∂j
∣∣
m
.

Combining this with ϕ : U → ϕ(U), which is also a bijection, we obtain finally a bijective map

τ = τϕ : ϕ(U)× Rk → π−1(U), τ(x, y) :=
k∑
j=1

yj ∂j|ϕ−1(x).

Proposition 4.3. Let U :=
{

(Uα, ϕα) | α ∈ A
}

be a smooth atlas on M . There is a unique
second countable and Hausdorff topology on TM such that

V :=
{(

π−1(Uα), τ−1
α

)
| α ∈ A

}
is a C0-atlas on TM , where τα := τϕα . This atlas is in fact smooth so that TM is a smooth
manifold of dimension 2k. Moreover, π is a smooth map with surjective differential at each
point.

Proof. The proof consists of the following steps.

Step 1. Write ϕα = (s1, . . . , sk) and ϕβ = (x1, . . . , xk). At each point m ∈ Uα ∩ Uβ we obtain
two bases of TmM , namely ∂s

∣∣
m

and ∂x
∣∣
m

. Then the change-of-basis matrix between these
two bases is the Jacobi-matrix of θαβ , i.e.,

∂x
∣∣
m

= ∂s
∣∣
m
·B =⇒ B = Dθαβ. (4.4)
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Pick any function f and let Fα := f ◦ϕ−1
α be the coordinate representation of f with respect

to the chart ϕα. Then we have

Fβ = f ◦ ϕ−1
β = f ◦ ϕ−1

α
◦ ϕα ◦ ϕ

−1
β = Fα ◦ θαβ.

Therefore, using the above equality we obtain

∂xj f =
∂Fβ
∂xj

=
k∑
i=1

∂Fα
∂xi

∂θαβ, i
∂xj

=
k∑
i=1

∂θαβ, i
∂xj

∂si f, (4.5)

where we dropped the point where the derivatives are computed from the notations. Since f is
an arbitrary function, we obtain (4.4).

Step 2. For the coordinate transformation Θαβ := τ−1
α
◦ τβ on TM we have

Θαβ(x, y) =
(
θαβ(x), θαβ ∗(x) y

)
. (4.6)

In particular, Θαβ is smooth.

Denote τβ(x, y) = v. This means

ϕβ
(
π(v)

)
= x and v =

k∑
j=1

yj ∂
x
j = ∂x · y,

where the right hand side of this equality is interpreted in the sense of (4.1). Therefore, by (4.4)
we have

v = ∂x · y = ∂s ·Dθαβ · y.

Denoting τ−1
α (v) = (s, t), we have

s = ϕα
(
π(v)

)
= ϕα

(
ϕ−1
β (x)

)
= θαβ(x) and t = Dθαβ · y.

Step 3. We construct a topology on TM .

Declare a set V ⊂ TM to be open in TM if and only if τ−1
α (V ) = τα(V ∩ Uα) is open in

R2k for any α ∈ A. We have

(i) ∅ is open and τ−1
α (M) = ϕα(Uα)× Rk =⇒ M is open.

(ii) V1 and V2 are open =⇒ τ−1
α

(
V1 ∩ V2

)
= τ−1

α (V1) ∩ τ−1
α (V2) is open.

(iii) If Vβ are open for each β ∈ B, then τ−1
α

(
∪β Vβ

)
= ∪βτ−1

α (Vβ) is open.

Hence, this yields a topology on TM such that π is continuous. Moreover, each
(
π−1(Uα), τ−1

α

)
is a chart on TM .

Step 4. The topology of TM is Hausdorff and second countable.

Indeed, pick any two distinct points v1, v2 and consider the following cases:

(a) π(v1) 6= π(v2) =⇒ π−1(U1) and π−1(U2) separate v1 and v2 provided U1 ∩ U2 = ∅.

(b) π(v1) = π(v2) =: m =⇒ for any chart (Uα, ϕα) containing m the sets τα
(
Uα× V1

)
and

τα(Uα × V2) are open and separate v1 and v2 provided V1, V2 ⊂ Rk separate π2

(
τ−1
α (v1)

)
and π2

(
τ−1
α (v2)

)
.
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Furthermore, the constructed topology is second countable for the following reason: Let Ui
be a countable basis of the topology of M and Vj be a countable basis for Rk. Without loss of
generality we can assume that each Ui is contained in some chart Uαi . Then the collection of all
sets of the form

ταi
(
ϕαi(Ui)× Vj

)
is a countable basis for the topology of TM .

To finish the proof, pick a chart
(
π−1(Uα), τ−1

α

)
and consider the coordinate representation

of π with respect to this chart on TM and the chart (Uα, ϕα) on M :

ϕα ◦ π ◦ τα (x, y) = ϕα
(
ϕ−1
α (x)

)
= x =⇒ ϕα ◦ π ◦ τα = π1.

Thus π is smooth and its differential is surjective at each point. �

To get a better understanding of the tangent bundle let us consider the case of an embedded
submanifold M ⊂ R`. If ı : M → R` denotes the embedding, for each m ∈ M the map
ı∗(m) : TmM → R` is injective. Consider the map

j : TM → TR` = R` × R`, j(v) =
(
ı(m), ı∗(m)v

)
, where m := π(v).

Clearly, j is injective.
Let (U,ϕ) be a chart on R` adapted to M . Thinking of R`×R` as the tangent bundle of R`,

we obtain a chart
(
π−1

1 (U), τϕ
)

=
(
U × R`, τϕ

)
on R` × R`.

Furthermore, recall thatm ∈ U belongs toM if and only ifm = ϕ−1(x, 0) for some x ∈ Rk.
Also, v ∈ TmR` belongs to TmM if an only if

v =
k∑
j=1

yj ∂j
∣∣
ψ−1(x)

⇐⇒ τ−1
ϕ (v) =

(
(x, 0), (y, 0)

)
(notice that the summation runs to k!). Hence,

(
U × R`, τϕ

)
is a chart adapted to j(TM) (up

to a permutation of coordinates). In particular, j(TM) is a 2k-submanifold of R2`.
Finally, notice that j is just the differential of ı. Here we interpret the differential of ı as a

map TM → TR`.

Exercise 4.7. Recall that the restriction of ψ := π1 ◦ ϕ is a chart on M , where π1 : R` =
Rk ×R`−k → Rk is the projection. Show that the coordinate representation of j with respect to
the charts

(
π−1(U ∩M), τ−1

ψ

)
and (U × R`, τ−1

ϕ ) is the map

Rk × Rk 3 (x, y) 7→
(
ı1(x), ı1(y)

)
.

Deduce that j is an immersion and, hence, an embedding.

Thus, we can simply identify TM with j(TM) so that

TM =
{

(u, v) ∈ R2` | u ∈M and v ∈ TuM
}
.

Example 4.8. For M = Sk ⊂ Rk+1, we have

TSk =
{

(x, y) ∈ Sk × Rk+1 | 〈x, y〉 = 0
}
⊂ R2k+2.

In particular, for k = 1 we obtain that TS1 is a 2-submanifold of R4. In fact, we can realize
TS1 as a submanifold of R3 in the following sense. Consider the map

f : S1 × R→ R4, f(x0, x1; t) = (x0, x1, tx1,−tx0).

One can check that f is a diffeomorphism between S1×R ⊂ R3 and TS1 so that we can in fact
identify TS1 with an infinite cylinder. L 7
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4.3 Vector fields and their integral curves
Definition 4.9. A smooth map v : M → TM such that

π ◦ v = idM ⇐⇒ v(m) ∈ TmM

is called a (smooth) vector field on M .

For example, the map

v : S3 → R4, v(x) =
(
x, (x1,−x0, x3,−x2)

)
is a (smooth) vector field on S3. Since the first component of v must be x by the very definition
of the vector field, usually one simply writes

v(x) =
(
x1,−x0, x3,−x2

)
.

Denote
X(M) :=

{
v : M → TM is a vector field

}
.

Clearly, X(M) is a real vector space with respect to the following operations:

•
(
v1 + v2

)
(m) := v1(m) + v2(m), where v1, v2 ∈ X(M);

•
(
λv
)
(m) = λv(m), where v ∈ X(M) and λ ∈ R.

In fact, any vector field can be multiplied by any smooth function:(
f · v

)
(m) = f(m)v(m), where v ∈ X(M) and f ∈ C∞(M).

We summarize this in the following.

Proposition 4.10. The set X(M) of all vector fields on M has the structure of a module over
C∞(M) with respect to the pointwise addition and multiplication. �

Example 4.11. Consider M = Rk. We have seen that TRk ∼= Rk × Rk and that the natural
projection equals π1. Hence, a vector field is a map of the form

v(x) =
(
x, y(x)

)
,

where y ∈ C∞(Rk;Rk). Hence, we can identify X(Rk) with C∞(Rk;Rk) via the map

v =
(
idRk , y

)
7→ y.

More formally, this map is an isomorphism of C∞(M)-modules.

Generalizing the above example slightly, pick a chart (U,ϕ) on a manifold M , where ϕ =
(x1, . . . , xk). Since (4.2) is a basis of TmM , we can find the coordinates

(
y1(m), . . . , yk(m)

)
of v(m) with respect to this basis. In other words, y : U → Rk is a map such that

v(m) = ∂x
∣∣
m
· y(m)

holds at any point m ∈ U . Notice that the map y is well defined even if v is not necessarily
smooth. This map is called the coordinate (or local) representation of v with respect to the
chart (U,ϕ).
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Proposition 4.12. The map v : M → TM satisfying π ◦ v = idM is a smooth vector field if an
only if for each chart (U,ϕ) as above the coordinate representation y of v is smooth.

Proof. Recall that for any chart (U,ϕ) on M as above we constructed a chart
(
π−1(U), τ−1

ϕ

)
on TM . Just by the definitions of τϕ and y, for the coordinate representation of v with respect
to these charts we have

τ−1
ϕ
◦ v ◦ ϕ−1 =

(
x, y ◦ ϕ−1(x)

)
.

Hence, v is smooth if and only if y is smooth. �

Thus, locally over each chart U vector fields can be identified with smooth vector-valued
maps just as in Example 4.11. It turns out, however, that in general no such identification can
exist.1

Let γ : (a, b)→ M be a smooth curve. At any point t ∈ (a, b) we define the tangent vector
γ̇(t) ∈ Tγ(t)M to γ by

γ̇(t) (f) :=
d

dt

(
f ◦ γ(t)

)
⇐⇒ γ̇(t) :=

[
γ(s+ t)

]
.

In the above equation the first definition yields a tangent vector as a derivation, whereas the
second one as a class of curves through a point.

Consider R as a 1-dimensional manifold equipped with an atlas consisting of a single chart
(R, ϕ), where ϕ(t) = t. Notice that for each fixed t ∈ R the derivation

d

dt
: C∞(R)→ R, f 7→ f ′(t) (4.13)

is non-trivial, since for each point t there is a function f such that f ′(t) 6= 0. Hence, d
dt

is a
basis of TtR.

Proposition 4.14. We have
γ∗(t)

(
d
dt

)
= γ̇(t). (4.15)

Proof. By (2.58), for any f ∈ C∞(M) and any t ∈ R we have

γ∗(t)
(
d
dt

)
f =

(
f ◦ γ

)′
(t) = γ̇(t)(f).

Since f is an arbitrary function, we obtain (4.15). �

Let M be a submanifold in R`. Denoting by ı the embedding, we can think of any curve γ
in M as a curve in R`. More precisely, for any curve γ : (a, b)→M , Γ := ı ◦ γ is a curve in R`.
We have

Γ̇(t) =
(
ı ◦ γ

)
∗
d
dt

= ı∗ ◦ γ∗
d
dt

= ı∗
(
γ̇(t)

)
. (4.16)

Here I omitted the points where the differential is computed at in the notations. In other words,
thinking of ı∗ as an identification between TmM and ı∗

(
Tm
)
⊂ R`, the tangent vector to γ is

just the ordinary tangent vector well known from the analysis course.

Definition 4.17 (Integral curves). A (smooth) curve γ is called an integral curve of a vector
field v if

γ̇(t) = v
(
γ(t)

)
holds for any t ∈ (a, b).

1If time permits, we will return to this below.
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Example 4.18. Consider the curve γ : R → S3, γ(t) =
(

sin t, cos t, 0, 0
)
. We have γ̇(t) =(

cos t,− sin t, 0, 0
)
. Furthermore, if v is given by (4.3), then

v ◦ γ (t) =
(

cos t,− sin t, 0, 0
)
.

Hence, γ is an integral curve of (4.3).

Let us consider integral curves on Rk in some detail. Thus, represent a vector field v ∈
X(Rk) by a smooth map y : Rk → Rk just as in Example 4.11 above. A map γ : (a, b)→ Rk is
an integral curve of v if and only if

γ̇(t) = y
(
γ(t)

)
⇐⇒


γ̇1(t) = y1

(
γ1(t), . . . , γk(t)

)
,

· · · · · · · · ·
γ̇k(t) = yk

(
γ1(t), . . . , γk(t)

)
,

(4.19)

holds for any t ∈ (a, b). In other words, an integral curve of a vector field is a solution of a
system of ordinary differential equations (ODEs). Notice that the map y does not depend on t,
that is (4.19) is an autonomous system of ODEs.

Conversely, any system of ODEs as above, is uniquely specified by a map y ∈ C∞(Rk;Rk).
In view of Example 4.11, y corresponds to a vector field v, whose integral curves are solutions
of the initial system of ODEs. Thus, at least for Euclidean spaces, integral curves of vector
fields and solutions of autonomous systems of ODEs are synonymous.

Exercise 4.20. Show that if γ is a C1-curve satisfying (4.19), then γ is smooth.

Notice that for autonomous systems we have the following property: If γ is a solution
of (4.19) such that γ(t0) = m0, then for any c ∈ (a, b)

γc(t) := γ(t+ c), t ∈ (a− c, b− c)

is also a solution. In other words, the integral curve γ1 of v such that γ1(t1) = m0 satisfies

γ1(t) = γ
(
t+ t0 − t1

)
,

that is γ1 differs from γ just by a shift of time. For this reason, one often chooses t0 = 0 as the
initial time for integral curves of vector fields.

By the main theorem of ODEs [Hal80, Sec.I.3], we obtain the following existence and
uniqueness result.

Theorem 4.21. Let v be a smooth vector field on an open subset Ω ⊂ Rk. For any pointm0 ∈ Ω
there exists a neighbourhood V ⊂ Ω of m0 and a number ε > 0 with the following property:
For any m ∈ V there exists an integral curve

γ = γm : (−ε, ε)→ Ω such that γ(0) = m.

This integral curve is unique in the following sense: If β : (−δ, δ) → M is any other integral
curve such that β(0) = m, then β and γm coincide on (−ε, ε) ∩ (−δ, δ). Moreover, the map

Φ: (−ε, ε)× V → Rk, Φ(t,m) := γm(t) (4.22)

is smooth. �
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Definition 4.23. An integral curve γ : (a, b) → M of a vector field v is called maximal, if the
following property holds: For any other integral curve β : (c, d) → M of v such that for some
t0 ∈ (a, b) ∩ (c, d) we have γ(t0) = β(t0), then:

(i) (c, d) ⊂ (a, b);

(ii) β = γ
∣∣
(c,d)

.

It is a well-known fact from the theory of ODEs, that for any m0 ∈ Rk there is a unique
maximal solution of (4.19) through m0. A straightforward corollary is, that for any vector field
v on any manifold M there is a unique maximal integral curve γ of v through a given point.

Corollary 4.24. If M is compact, then a maximal integral curve of any vector field is defined
on all of R.

Proof. For each point m ∈ M pick a chart (U,ϕ) containing m. Writing ϕ = (x1, . . . , xk),
we obtain the coordinate representation of the vector field v via the map y : Ω := ϕ(U) → Rk.
Then γ : (a, b)→ U is an integral curve of v if and only if for Γ := ϕ ◦ γ we have

Γ̇(t) = y
(
Γ(t)

)
for t ∈ (a, b),

cf. (4.19). By Theorem 4.21, there exists a neighborhood Vm such that for each m̂ ∈ Vm
the integral curve γm̂ through m̂ is defined on (−εm, εm). By the compactness of M , we
can find a finite collection of points {m1, . . . ,m`} such that the corresponding collection of
neighbourhoods

{
Vj := Vmj | 1 ≤ j ≤ `

}
covers all of M . Set

ε :=
min{εmj | 1 ≤ j ≤ ` }

2
> 0.

Let γ : (a, b) → M be a maximal integral curve of v. Assuming b < ∞, the point m0 :=
γ(b− ε) lies in some Vj . By the construction of ε, there is a unique integral curve γm0 , which is
well-defined on (−2ε, 2ε) and satisfies γm0(0) = m0. Set

γ̂ : (a, b+ ε)→M, γ̂(t) =

{
γ(t) for t ∈ (a, b− ε),
γm0

(
t− b+ ε

)
for t ∈

[
b− ε, b+ ε

)
.

Notice that γ̂ is continuous since γm0(b− ε) = m0 = γ(b− ε). In fact, by the construction γ̂ is
an integral curve of v on (a, b − ε) ∪ (b − ε, b + ε). It follows that γ̂ is a C1-integral curve of
v and therefore smooth by Exercise 4.20. Thus, γ̂ is an integral curve of v defined on a larger
interval. This contradicts the maximality of γ. �

Exercise 4.25. Modify the proof of Corollary 4.24 to show the following: For any manifold M
and any vector field v such that

supp v := {m | v(m) 6= 0}

is compact, any maximal integral curve of v is defined on all of R.
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4.4 Flows and 1-parameter groups of diffeomorphisms
In this section I assume that M is a compact manifold.

For a vector field v define the flow of v to be the map

Φ: R×M →M, Φ(t,m) = γm(t).

Of course, this is just the map Φ of Theorem 4.21 extended to the whole real line. Sometimes,
(4.22) is referred to as the local flow of v.

Beside the flow, for each fixed t ∈ R it is also convenient to consider

Φt : M →M, Φt(m) = Φ(t,m) = γm(t).

Proposition 4.26. The following holds:

(i) Each Φt is a diffeomorphism. Moreover, Φ−1
t = Φ−t;

(ii) For any t, s ∈ R we have Φt ◦ Φs = Φt+s = Φs ◦ Φt;

(iii) Φ0 = idM ;

Proof. For m ∈M and t ∈ R denote Φt(m) = m̂. This means that γm(t) = m̂, where γm is an
integral curve of v such that γm(0) = m.

Consider the curve β defined by β(s) = γm(s + t). Then β is an integral curve of v and
β(0) = γm(t) = m̂, that is β = γm̂. Hence,

Φs(m̂) = γm̂(s) = β(s) = γm(s+ t) = Φs+t(m) ⇐⇒ Φs ◦ Φt = Φs+t.

Since (iii) holds by the very definition of Φt, by (ii) we obtain

Φ−t ◦ Φt = idM = Φt ◦ Φ−t.

In particular, each Φt is a diffeomorphism and Φ−1
t = Φ−t �

Definition 4.27. A 1-parameter group of diffeomorphisms is any smooth map Φ: R×M →M
such that Properties (i)–(iii) of Proposition 4.26 hold.

To explain the above definition, notice that the set

Diff(M) :=
{
f : M →M | f is a diffeomorphism

}
is a group with respect to the composition operation. Diff(M) is called the diffeomorphism
group ofM . With this understood, a 1-parameter group of diffeomorphisms is simply a homomorphism
of groups

R→ Diff(M), t 7→ Φt

such that Φt(m) = Φ(t,m) depends smoothly on (t,m).
Thus, Proposition 4.26 states that each vector field on a compact manifold generates a 1-

parameter group of diffeomorphisms. Conversely, it turns out that any 1-parameter group of
diffeomorphisms generates a vector field in the following sense.

Proposition 4.28. For any 1-parameter group of diffeomorphisms Φ there exists a vector field
v, whose 1-parameter group of diffeomorphisms coincides with Φ.
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Proof. For any m ∈M denote

γm : R→M, γm(t) := Φ(t,m) and v(m) := γ̇m(0).

The reader should check that v is a smooth vector field.
Furthermore, denote γm(t) = m̂ and observe that

γm̂(s) = Φs(m̂) = Φs

(
Φt(m)

)
= Φt+s(m) = γm(t+ s).

In other words, if at : R→ R is defined by at(s) = t+ s, then γm̂ = γm ◦ at. Hence,

v
(
γm(t)

)
= v
(
m̂
)

= γm̂ ∗
∣∣
s=0

(
d
ds

)
=
(
γm ◦ at

)
∗

∣∣
s=0

(
d
ds

)
= γm ∗

∣∣
s=t
◦
(
at
)
∗

∣∣
s=0

(
d
ds

)
= γm ∗

∣∣
s=t

(
d
ds

)
= γ̇m(t).

Thus, γm is the integral curve of v. Therefore, the 1-parameter group of diffeomorphisms
generated by v is

(t,m) 7→ γm(t) = Φ(t,m),

In other words, the 1-parameter group of diffeomorphisms generated by v coincides with Φ. �

To sum up, for compact manifolds there is a natural bijective correspondence between vector
fields and 1-parameter groups of diffeomorphisms. L 8

Draft 44 January 17, 2022



Chapter 5

Differential forms and the Brouwer degree

5.1 Some elements of (multi)linear algebra

For any vector space V over R of dimension k, we can associate the dual vector space

V ∗ := {χ : V → R | χ is linear }.

Moreover, if v is a basis of V , then

v∗ :=
(
v∗1, . . . , v

∗
k

)
uniquely determined by v∗j (vi) = δij

is a basis of V ∗. In particular, dimV ∗ = dimV = k.
In the case V = Rk we have a distinguished isomorphism

Rk →
(
Rk
)∗
, y 7→ χy, χy(x) =

k∑
j=1

xjyj = 〈x, y〉 (5.1)

so that in practice we identify
(
Rk
)∗ with Rk via this isomorphism.

There are other ways to construct new vector spaces from a given one. Particularly relevant
for us will be the space of p-forms on V , where p ∈ N. This is denoted by ΛpV ∗ and consists
of all maps ω : V × · · · × V → R such that the following holds:

(a) ω(w1, . . . ,wj, . . . ,wp) is linear in each argument;

(b) ω(w1, . . . ,wj,wj+1, . . . ,wp) = −ω(w1, . . . ,wj+1,wj, . . . ,wp) for any w1, . . . ,wp ∈ V .

In particular, for p = 1 the second condition above is vacuous so that Λ1V ∗ = V ∗.
Elements of ΛpV ∗ are called p-forms on V .
Let us consider the case p = 2 in some details. Notice that we have a natural map

V ∗ × V ∗ → Λ2V ∗, (χ1, χ2) 7→ χ1 ∧ χ2, where

χ1 ∧ χ2

(
w1,w2

)
= χ1(w1)χ2(w2)− χ1(w2)χ2(w1).

Notice that this maps is skew-symmetric, that is χ1 ∧ χ2 = −χ2 ∧ χ1. In particular, χ ∧ χ = 0
for any χ ∈ V ∗.
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Proposition 5.2. If v∗ is the dual basis of V ∗, then

v∗1 ∧ v∗2, v∗1 ∧ v∗3, . . . , v∗1 ∧ v∗k,

v∗2 ∧ v∗3, . . . , v∗2 ∧ v∗k
· · · · · · · · · · · · · · · · · ·

v∗k−1 ∧ v∗k

(5.3)

is a basis of Λ2V ∗. In particular, dim Λ2V ∗ = k(k−1)
2

.

Proof. Notice first that (5.3) consists of linearly independent 2-forms:∑
i<j

λijv
∗
i ∧ v∗j = 0 =⇒ 0 =

(∑
i<j

λijv
∗
i ∧ v∗j

)(
vp, vq

)
= λpq,

where p < q.
Furthermore, any 2-form ω on V can be uniquely represented as a linear combination

of (5.3), since
λij := ω(vi, vj) =⇒ ω =

∑
i<j

λij v∗i ∧ v∗j . �

One more particularly important case arises when p = k. Define v∗1 ∧ · · · ∧ v∗k as follows.
Given any k-tuple w =

(
w1, . . . ,wk

)
of vectors in V , decompose each wj in terms of the basis

v, that is write wj =
∑

i bijvi. This yields a k × k-matrix B such that w = v ·B. Set

v∗1 ∧ · · · ∧ v∗k
(
w1, . . . ,wk

)
= detB.

Arguing just like in the case p = 2, we obtain that v∗1∧· · ·∧v∗k is a basis of ΛkV ∗. In particular,
dim ΛkV ∗ = 1.

For any linear map A : V → W between linear spaces we can associate the dual map

A∗ : W ∗ → V ∗,
(
A∗χ

)
(v) = χ

(
Av
)
.

Just by the very definition of the dual map, we have(
AB
)∗

= B∗A∗ (5.4)

for any linear maps A : V → W and B : U → V .
Let v = (v1, . . . , vk) be a basis of V . Assume that w := Av =

(
Av1, . . . , Avk

)
is a basis

of W so that A is an isomorphism. Then A∗ maps w∗ to v∗. In particular, the dual of an
isomorphism is itself an isomorphism.

In fact, for any p ∈ N and A as above we have the corresponding map

A∗ : ΛpW ∗ → ΛpV ∗,
(
A∗ω

)
(v1, . . . , vp) = ω

(
Av1, . . . , Avp

)
.

Notice that for this map, (5.4) still holds.
A particularly interesting case arises when p = k andW = V . Indeed, since dim ΛkV ∗ = 1,

A∗ : ΛkV ∗ → ΛkV ∗ must be the multiplication with a number. To compute this number, let
w = (w1, . . . ,wk) be a k-tuple of vectors in V . Writing w = v ·B for some matrix B as above,
we obtain

Aw = vAB.
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Here, sligtly abusing notations, I denoted by A on the right hand side of the equality the matrix
of the linear map A with respect to the basis v. Hence,

A∗
(
v∗1 ∧ · · · ∧ v∗k

)
(w1, . . . ,wk) = det

(
AB) = detA · detB

= detA · v∗1 ∧ · · · ∧ v∗k (w1, . . . ,wk) =⇒
A∗
(
v∗1 ∧ · · · ∧ v∗k

)
= detA · v∗1 ∧ · · · ∧ v∗k.

Thus, for p = dimV , A∗ is the multiplication with detA. In fact, one could have taken this as
the definition of detA thus avoiding the choice of a basis.

5.2 The cotangent bundle
Proceeding just like in Section 4.2, we can construct another manifold starting fromM . Namely,
consider the set

T ∗M :=
⊔
m∈M

T ∗mM, where T ∗mM := (TmM)∗ =
{
χ : TmM → R | χ is linear

}
.

This comes equipped with a map

π : T ∗M →M, π(χ) = m ⇔ χ ∈ TmM.

For example, in the case M = Rk, for each m ∈ Rk we have the linear isomorphism

Am : Rk → TmM, Amy =
k∑
j=1

yj∂j
∣∣
m
,

cf. (4.1). The dual of this map is also an isomorphism:

A∗m : T ∗mM →
(
Rk
)∗ ∼= Rk.

More explicitly, if ∂x|m is the basis of TmRk, denote by dx|m the dual basis, that is

dxi
∣∣
m

(
∂j
∣∣
m

)
= δij.

Then

A∗m χ = y ⇐⇒ χ =
k∑
j=1

yj dxj
∣∣
m

= dx
∣∣
m
· y.

Hence, just like in the case of the tangent bundle, we obtain

T ∗Rk =
⊔
m∈Rk

T ∗mRk = Rk × Rk and π = π1.

Furthermore, let (U,ϕ) be a chart on M . Write ϕ = (x1, . . . , xk) and just like in the case of
Rk define dx

∣∣
m

to be the basis of T ∗mM dual to ∂x
∣∣
m

. Therefore, we obtain the bijection

U × Rk → π−1(U) =
⊔
m∈U

T ∗mM, (m, y) 7→
k∑
j=1

yj dxj
∣∣
m
.
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Combining this with ϕ : U → ϕ(U), which is also a bijection, we obtain finally a bijective map

τ = τϕ : ϕ(U)× Rk → π−1(U), τ(x, y) :=
k∑
j=1

yj dxj|ϕ−1(x).

The following proposition is an analogue of Proposition 4.3 in the present setting. The proof
requires cosmetic changes only and is left as an exercise to the reader.

Proposition 5.5. Let U :=
{

(Uα, ϕα) | α ∈ A
}

be a smooth atlas on M . There is a unique
second countable and Hausdorff topology on T ∗M such that

V :=
{(

π−1(Uα), τ−1
α

)
| α ∈ A

}
is a C0-atlas on T ∗M , where τα := τϕα . This atlas is in fact smooth so that T ∗M is a smooth
manifold of dimension 2k. Moreover, π is a smooth map with surjective differential at each
point. �

Remark 5.6. Part of the proof is to show that the coordinate transformation maps for V are given
by

Θαβ(x, y) =
(
θαβ(x), θ tαβ ∗(x) y

)
.

Here I think of θαβ ∗(x) as a Jacobi-matrix of θαβ and the superindex t indicates the transposed
matrix. This should be compared with (4.6).

Definition 5.7. A smooth map ω : M → T ∗M such that

π ◦ v = idM ⇐⇒ ω(m) ∈ T ∗mM

is called a (smooth) differential 1-form on M (or, simply, just 1-form).

Denote
Ω1(M) :=

{
ω is a smooth differential 1-form on M},

which has a structure of a C∞(M)–module with respect to the pointwise addition and multipli-
cation.

Just like in the case of vector fields, any map ω : M → T ∗M such that π ◦ω = idM admits a
coordinate representation. More precisely, this means that for any chart (U,ϕ) on M such that
ϕ = (x1, . . . , xk) we can write

ω(m) =
k∑
j=1

yj(m) dxj
∣∣
m

= dx
∣∣
m
· y(m), y : U → Rk.

Proposition 5.8. The map ω : M → T ∗M satisfying π ◦ ω = idM is a smooth vector field if an
only if for each chart (U,ϕ) as above the coordinate representation y of ω is smooth. �

Example 5.9. For any y ∈ R` denote χy ∈
(
R`
)∗ the 1-form given by (5.1). If M ⊂ R` is a

submanifold, then TM ⊂ R` × R`. Define a differential 1-form ω on M by

ω
∣∣
m

(w) = χy(w), where w ∈ TmM ⊂ R`.

For example, choosing M = S2 ⊂ R3 and y = (1, 0, 0) we obtain

ω(w) = w1, whenever w ∈ TmS2.

The reader should check that this yields smooth 1-forms.
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Example 5.10 (The differential of a function). Let f be a smooth function on M . For any m ∈
M the differential of f is a linear map TmM → Tf(m)R. Recall that we have the isomorphism

TtR→ R, λ
d

dt
7→ λ,

see (4.13). Hence, the composition

df
∣∣
m

: TmM
f∗|m−−−→ Tf(m)R −→ R

is a linear map, that is df
∣∣
m
∈ T ∗mM .

Let us compute the coordinate representation of df . Thus, if (U,ϕ) is a chart as above, then

df
∣∣
m

(∂j) = λj ⇐⇒ f∗
∣∣
m

(∂j) = λj
d

dt

∣∣∣
f(m)

⇐⇒ f∗
∣∣
m

(∂j)h = λj h
′(f(m)

)
, ∀h ∈ C∞(R)

=⇒ f∗
∣∣
m

(∂j)h0 = λj h
′
0

(
f(m)

)
, with h0(t) = t

=⇒ ∂j
∣∣
m

(
h0 ◦ f

)
= ∂j

∣∣
m

(
f
)

= λj

=⇒ λj =
∂

∂xj

∣∣∣
ϕ(m)

F (x) =
∂F

∂xj
.

Furthermore, since (∂1, . . . , ∂k) is a basis of TmM , we obtain

df =
k∑
j=1

λjdxj =
k∑
j=1

∂F

∂xj
dxj.

That is, the coordinate representation of df is the map

x 7→
( ∂F
∂x1

, . . . ,
∂F

∂xk

)
.

In particular, df is a smooth 1-form.

Example 5.11. Consider the following special case of the previous example: M = Rk and
fj(x) = xj . Then

dfj =
k∑
i=1

∂fj
∂xi

dxi = dxj.

Thus, dxj is not just an element of the dual basis, but also the differential of the function x 7→ xj .
This explains the choice of notations for the elements of the basis dual to ∂x.

5.3 The bundle of p-forms
Even slightly more generally than in the previous section, consider the set

ΛpT ∗M :=
⊔
m∈M

ΛpT ∗mM,

which is equipped with the natural projection π : ΛpT ∗M → M . Once again, we can define a
Hausdorff second countable topology on this set and a smooth atlas so that ΛpT ∗M becomes a
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smooth manifold. Given a chart (U,ϕ), ϕ = (x1, . . . , xk), a map ω : M → ΛpT ∗M such that
π ◦ω = idM admits a coordinate representation with respect to this chart. In the case p = 2, this
means that there is a unique map y : U → R

k(k−1)
2 such that

ω(m) =
∑
i<j

yij(m) dxi
∣∣
m
∧ dxj

∣∣
m
.

Then ω is smooth if and only if each yij is smooth. The reader can obtain all these statements
just by repeating the arguments used in the case of TM and T ∗M .

Definition 5.12. Let ω be a smooth p-form on M . Then the p-form f ∗ω defined by

f ∗ω
∣∣
m

(v1, . . . , vp) := ω
∣∣
f(m)

(
f∗(v1), . . . , f∗(vp)

)
for v1, . . . , vp ∈ TmM

is called the pull-back of ω with respect to f .

Proposition 5.13. For any two smooth maps f : M → N and g : N → L and any ω ∈ Ωp(L)
we have (

g ◦ f
)∗
ω = f ∗(g∗ω).

Proof. The proof follows directly from Proposition 2.63. Indeed, for any v1, . . . , vp ∈ TmM
we have

f ∗(g∗ω)(v1, . . . , vp) = g∗ω
(
f∗v1, . . . , f∗vp

)
= ω

(
g∗f∗v1, . . . , g∗f∗vp

)
=
(
g◦f

)∗
ω(v1, . . . , vp).

�

Example 5.14. Consider dyj as a smooth 1-form on R`. This means that for any w ∈ TyR` ∼= R`

we have dyj(w) = wj . If f : Rk → R` is any smooth map, then for u ∈ TxRk ∼= Rk we have(
f ∗dyj

)
(u) = dyj

(
f∗u
)

=
k∑
i=1

∂fj
∂xi

ui =
k∑
i=1

∂fj
∂xi

dxi(u) =⇒

f ∗dyj =
k∑
i=1

∂fj
∂xi

dxi = dfj

Example 5.15. Let ω =
∑`

j=1 ωj(y) dyj be a 1-form on R` and f : Rk → R` be a smooth map.
Just like in the previous example, for any u ∈ TxRk we have(

f ∗ω
)
(u) = ω

∣∣
f(x)

(
f∗u
)

=
∑̀
j=1

ωj
(
f(x)

)
dyj
(
f∗(u)

)
=
∑̀
j=1

ωj
(
f(x)

)
dfj(u) =⇒

f ∗ω =
∑̀
j=1

(ωj ◦ f) dfj =
∑̀
j=1

k∑
i=1

(ωj ◦ f)
∂fj
∂xi

dxi.

Example 5.16. Let f ∈ C∞(Rk;Rk). For w1, . . . ,wk ∈ TxRk we have

f ∗
(
dx1 ∧ · · · ∧ dxk

)
(w1, . . . ,wk) = dx1 ∧ · · · ∧ dxk

(
f∗w1, . . . , f∗wk

)
= detB, where

B =

 ∂f1
∂x1

. . . ∂f1
∂xk

. . . . . . . . .
∂fk
∂x1

. . . ∂fk
∂xk

w11 . . . w1k

. . . . . . . . .
wk1 . . . wkk

 =⇒

f ∗
(
dx1 ∧ · · · ∧ dxk

)
(w1, . . . ,wk) = det

(
f∗
∣∣
x

)
· dx1 ∧ · · · ∧ dxk

(
w1, . . . ,wk

)
=⇒

f ∗
(
dx1 ∧ · · · ∧ dxk

)
= det

(
f∗
∣∣
x

)
· dx1 ∧ · · · ∧ dxk. L 9
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5.4 The differential of a 1-form
Theorem 5.17. For any manifold M there is a unique map d : Ω1(M) → Ω2(M) with the
following properties:

(i) d is linear, that is

d
(
λ1ω1 + λ2ω2

)
= λ1dω1 + λ2dω2, ∀λ1, λ2 ∈ R and ∀ω1, ω2 ∈ Ω1(M);

(ii) d satisfies the Leibnitz rule, that is

d
(
fω
)

= df ∧ ω, ∀ f ∈ C∞(M) and ∀ω ∈ Ω1(M);

(iii) d commutes with pull-backs, that is

d
(
f ∗ω

)
= f ∗

(
dω
)
, ∀ f ∈ C∞(M) and ∀ω ∈ Ω1(M).

(iv) For any smooth function f we have

d(df) = 0.

The map d described in the above theorem is called the exterior differential (or, simply, the
differential).

Sketch of proof. Assume first that d exists. In the particular case M = Rk, any 1-form ω can be
written as

∑
ωj(x) dxj . Then the linearity and the Leibnitz rule yield:

dω = d
( k∑
j=1

ωj dxj

)
=

k∑
j=1

d
(
ωj dxj

)
=

k∑
j=1

(
dωj ∧ dxj + ωj d(dxj)

)
=

k∑
j=1

dωj ∧ dxj

(5.18)

With this understood, we can use (5.18) to define the exterior differential d : Ω1(Rk)→ Ω2(Rk).
A straightforward, albeit laborious, verification shows, that this map satisfies (i)–(iv) indeed.

For a general manifold M , we can proceed as follows. Pick a chart (Uα, ϕα) and denote
ψα := ϕ−1

α : ϕα(Uα)→M . Then for any ω ∈ Ω1(M) the pull-back ψ∗αω is a 1-form on an open
subset of Rk. Denoting temporarily by dRk the differential acting on 1-forms on Rk, define

dMω
∣∣
Uα

:= ϕ∗α

(
dRk
(
ψ∗αω

))
.

On the overlap Uαβ = Uα ∩ Uβ of two charts, we have

ϕ∗α

(
dRk
(
ψ∗αω

))
= ϕ∗β

(
dRk
(
ψ∗βω

))
⇐⇒ dRk

(
ψ∗αω

)
= ψ∗αϕ

∗
β

(
dRk
(
ψ∗βω

))
.

The letter equality can be established as follows. By Proposition 5.13, we have

ψ∗αϕ
∗
β

(
dRk
(
ψ∗βω

))
=
(
ϕβ ◦ ψα

)∗(
dRk
(
ψ∗βω

))
= θ∗βα

(
dRk
(
ψ∗βω

))
.

Furthermore, using the fact that dRk commutes with the pull-backs, we arrive at

θ∗βα

(
dRk
(
ψ∗βω

))
= dRk

(
θ∗βαψ

∗
βω
)

= dRk
(
(ψβ ◦ θβα)∗ω

)
= dRk(ψ

∗
αω).

Hence, dM is well-defined. It is then straightforward to check that dM satisfies (i)–(iv). �
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5.5 Orientability and integration of k-forms
Definition 5.19. An atlas A = {(Uα, ϕα) | α ∈ A} on M such that for all α, β ∈ A the
inequality

det θαβ ∗ > 0

holds everywhere on ϕβ(Uαβ) ⊂ Rk is called oriented. A maximal oriented atlas is said to be
an orientation of M . M is called orientable if it admits an orientation.

Example 5.20.

(a) Since Rk admits an atlas consisting of just one chart, Rk is orientable. In fact, the default
orientation of Rk is the maximal oriented atlas containing the chart (Rk, idRk).

(b) The atlas on S2 consisting of two charts constructed in the Introduction is not oriented.
Indeed, by (1.3) we obtain

θSN ∗ =
1

|y|4

(
y2

2 − y2
1 −2y1y2

−2y1y2 y2
1 − y2

2

)
=⇒ det θSN ∗ = − 1

|y|8
(
(y2

2−y2
1)2+4y2

1y
2
2

)
< 0.

To obtain an oriented atlas, set

V :=
{

(UN , ϕ̂N), (US, ϕS)
}
,

where ϕ̂N = ρ ◦ ϕN and ρ(y1, y2) = (−y1, y2). Then the coordinate transformation map
is given by

θ̂NS = ρ ◦ θNS =⇒ det θ̂NS ∗ = − det θNS > 0.

Hence, S2 is orientable. Moreover, this atlas determines the default orientation of S2.
More generally, any k-sphere is orientable (oriented).

(c) The product of two orientable (oriented) manifolds is also orientable (oriented). For
example, the torus T2 is oriented.

Let A be an orientation of M . Just like in Example 5.20, (b) fix any linear isomorphism
ρ : Rk → Rk such that det ρ < 0. Then Ā :=

{
(Uα, ρ ◦ ϕα) | α ∈ A

}
is also an orientation.

This is called the opposite orientation (to A).

Exercise 5.21. Prove that any connected orientable manifold admits exactly two orientations.

A standard example of a non-orientable manifold is the Möbius strip.
Let M be an oriented manifold of dimension k. Let ω be a k-form on M such that suppω is

a compact subset contained in a chart (Uα, ϕα). Then ψ∗αω is a k-form on Rk, where ψα = ϕ−1
α .

We can write
ψ∗αω = aα(x1, . . . , xk) dx1 ∧ · · · ∧ dxk,

where supp aα is a compact subset in ϕ(U) ⊂ Rk. Define∫
M

ω :=

∫
ϕα(Uα)

aα(x1, . . . , xk) dx1 . . . dxk.
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We wish to show that this is well-defined, that is if (Uβ, ϕβ) is any other chart from the same
oriented atlas such that suppω ⊂ Uβ , then∫

ϕα(Uα)

aα(x1, . . . , xk) dx1 . . . dxk =

∫
ϕβ(Uβ)

aβ(y1, . . . , yk) dy1 . . . dyk. (5.22)

The computation required to verify this equality is similar to the one we did in the proof of
Theorem 5.17. Indeed,

θ∗βαψ
∗
βω = (ψβ ◦ θβα)∗ω = ψ∗αω =⇒

θ∗βα
(
aβ dy1 ∧ · · · ∧ dyk

)
= aα dx1 ∧ · · · ∧ dxk =⇒

aα(x) =
(
aβ ◦ θβα(x)

)
· det θβα ∗(x).

Applying the change of variables formula in multiple integrals on Rk, we obtain∫
ϕα(Uα)

aα(x) dx =

∫
ϕβ(Uβ)

(
aα ◦ θβα(y)

)
·
∣∣ det θβα ∗(y)

∣∣ dy
=

∫
ϕβ(Uβ)

(
aα ◦ θβα(y)

)
· det θβα ∗(y) dy

=

∫
ϕβ(Uβ)

aβ(y) dy,

(5.23)

where dx1 . . . dxk is replaced simply by dx to simplify the notations. Notice that the second
equality in (5.23) crucially uses the fact that det θβα ∗ > 0. Thus, this establishes (5.22) and,
hence, proves that

∫
M
ω is well-defined.

More generally, assume that M is a compact oriented manifold. Choose a finite partition of
unity {ρ1, . . . , ρJ} such that supp ρj is contained in a coordinate chart. For any ω ∈ Ωk(M)
this yields the decomposition

ω =
J∑
j=1

ωj, where ωj := ρj · ω.

Notice that suppωj ⊂ supp ρj is contained in a coordinate chart.

Definition 5.24. Let M be a compact oriented manifold. For any ω ∈ Ωk(M) define∫
M

ω :=
J∑
j=1

∫
M

ωj.

We still need to check that
∫
M
ω does not depend on the choice of the partition of unity. To

this end, let {νi | 1 ≤ i ≤ I } be another finite partition of unity such that supp νi is contained
in some chart for each i. We have

J∑
j=1

∫
M

ωj =
J∑
j=1

∫
M

( I∑
i=1

νiωj

)
=

J∑
j=1

I∑
i=1

∫
M

νiρjω =
I∑
i=1

∫
M

νiω,

where we used the fact that {νi} is a partition of unity to obatin the first equality, additivity of
the integral in Rk to obtain the second one, and the fact that {ρj} is a partition of unity to obtain
the last one. The above equality shows that

∫
m
ω is well-defined indeed.
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Example 5.25. For M = S1 choose charts (U1, ϕ1) and (U2, ϕ2) such that

U1 := S1 \ {(1, 0)}, ψ1 : (0, 2π)→ U1, ψ1(t) = (cos t, sin t);

U2 := S1 \ {(−1, 0)}, ψ2 : (−π, π)→ U2, ψ2(s) =
(

cos s, sin s
)
,

where ψj = ϕ−1
j . Let ω be a differential 1-form defined on an open subset V ⊂ R2 containing

S1. In particular, we can write

ω = a(x, y) dx+ b(x, y) dy

for some smooth functions a and b on V . Notice that by the compactness of S1 there exists a
constant C > 0 such that

|a(x, y)| ≤ C and |b(x, y)| ≤ C (5.26)

holds for all (x, y) ∈ S1.
Furthermore, pick any positive ε � 1 and choose a smooth function ρ2 : S1 → [0, 1] such

that ρ2 ◦ ψ2 ≡ 1 on [−ε, ε] and ρ2 ◦ ψ2 ≡ 0 on the complement of [−2ε, 2ε]. Setting also
ρ1 := 1− ρ2, we obtain a partition of unity subordinate to {U1, U2}.

In order to compute
∫
S1 ω, it is convenient to compute ψ∗j ı

∗ω = ψ∗j first. Thus,

ψ∗1ω =
(
a
(

cos t, sin t
)
· (− sin t) + b

(
cos t, sin t

)
· cos t

)
dt

ψ∗2ω =
(
a
(

cos s, sin s
)
· (− sin s) + b

(
cos s, sin s

)
· cos s

)
ds

(5.27)

Therefore,∫
S1

ı∗ω =

∫
U1

ρ1ω +

∫
U2

ρ2ω =

∫ 2π

0

(
ρ1 ◦ ψ1

)
ψ∗1ω +

∫ π

−π

(
ρ1 ◦ ψ2

)
ψ∗2ω

=

∫ 2π−2ε

2ε

ψ∗1ω +

∫
[0,2ε]∪[2π−2ε,2π]

(
ρ1 ◦ ψ1

)
ψ∗1ω +

∫
[−2ε,2ε]

(
ρ2 ◦ ψ2

)
ψ∗2ω.

(5.28)

Using (5.27), (5.26) and
∣∣ρ2 ◦ ψ2

∣∣ ≤ 1, for the last term we have∣∣∣ ∫
[−2ε,2ε]

(
ρ2 ◦ ψ2

)
ψ∗2ω

∣∣∣ ≤ 4Cε.

By a similar argument, the absolute value of the middle term on the right hand side of (5.28) is
also bounded by 4Cε. Hence, by passing to the limit as ε→ 0, we obtain∫

S1

ı∗ω =

∫ 2π

0

(
− a
(

cos t, sin t
)
· sin t+ b

(
cos t, sin t

)
· cos t

)
dt.

Example 5.29. Choose the following covering of S2:

U+ := {(x, y, z) ∈ S2 | z > 0 }, U− := {z < 0 }, and Uε := {|z| < ε}.

Arguing just like in the previous example, one can show that for any ω ∈ Ω2(S2), we have∫
S2

ω =

∫
D

ψ̂∗Nω +

∫
D

ψ∗Sω,
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where ψ̂N and ψS are defined in Example 5.20 (b) and D ⊂ R2 is the disc of the unit radius.
For example, assume that ω = dη for some η ∈ Ω1(S2). If

ψ∗Sη = a(x, y) dx+ b(x, y) dy,

then applying the Greens formula we obtain∫
D

ψ∗Sdη =

∫
D

d
(
ψ∗Sη

)
=

∫
D

( ∂b
∂x
− ∂a

∂y

)
dxdy =

∫
S1

(
a dx+ b dy

)
=

∫
[0,2π]

(
− a
(

cos t, sin t
)
· sin t+ b

(
cos t, sin t

)
· cos t

)
dt

Notice that we have

fS := ψS
∣∣
S1 = ψS ◦ ıS1 : S1 → S2, (x, y) 7→ (x, y, 0),

where ıS1 : S1 → D is the embedding of the circle as the boundary of the disc. Hence,

f ∗Sη =
(
ψS ◦ ıS1

)∗
η = ı∗S1

(
ψ∗Sη

)
=⇒∫

S1

f ∗Sη =

∫
[0,2π]

(
− a
(

cos t, sin t
)
· sin t+ b

(
cos t, sin t

)
· cos t

)
dt.

Here the last equality follows by Example 5.25. Thus,∫
D

ψ∗Sdη =

∫
S1

f ∗Sη. (5.30)

By a similar argument, we also have∫
D

ψ̂∗Ndη = −
∫
S1

f ∗Nη. (5.31)

The minus sign appears for the following reason: when applying Greens formula, one should
orient S1 as the boundary of D. This yields the opposite orientation of the equator.

Thus, by (5.30) and (5.31) we obtain finally∫
S2

dη = 0 for any η ∈ Ω1(S2).

5.6 The degree of a map
Let M and N be compact connected oriented manifolds of dimension k. Pick any ω ∈ Ωk(N)
such that

∫
N
ω = 1. The existence of such forms can be established as follows: We can choose

a bump function ρ ∈ C∞(Rk) such that supp ρ ⊂ Br(0) and a :=
∫
Br(0)

ρ(x) dx > 0. Set
ω̂ := ρ(x) dx1 ∧ · · · ∧ dxk and choose a chart (U,ϕ) on N such that ϕ(U) ⊃ Br(0). Having
made these choices, we obtain∫

M

ϕ∗ω̂ =

∫
Br(0)

ω̂ =

∫
Br(0)

ρ(x) dx = a > 0,

so that for ω := a−1ω̂ we have
∫
N
ω = 1.
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Definition 5.32. Let f : M → N be any smooth map. The number

deg f :=

∫
M

f ∗ω

is called the Brouwer degree of f (or, simply, the degree of f ), where ω is any k-form on N
such that

∫
N
ω = 1.

It is by no means obvious that deg f does not depend on the choice of ω. The proof of
this is somewhat technical and is omitted here, however let me outline briefly the main steps
required. Assume for the sake of simplicity that k = 2 (This is only needed, because the exterior
diffrential has been defined for 1-forms, however a suitable generalization of Theorem 5.17
yields the exterior differential as a map Ωp(M)→ Ωp+1(M) for all p).

Thus, if ω1 is another 2-form such that
∫
M
ω1 = 1, then for ω0 := ω−ω1 we have

∫
M
ω0 = 0.

It is not too hard to show that there exists η ∈ Ω1(M) such that ω = dη [BT03, Thm 5.5.5].
Furthermore, one can show that ∫

M

dη = 0 (5.33)

holds for any ω ∈ Ω1(M). This can be seen as follows. Using a partition of unity, write
η =

∑
j ηj , where supp ηj ⊂ Uj and Uj is a chart. Using the Green’s formula, one obtains∫

M
dηj = 0 for each j. This in turn implies (5.33).
With this understood, we obtain

ω1 = ω − ω0 = ω − dη =⇒
∫
M

ω1 =

∫
M

ω −
∫
M

dη =

∫
M

ω,

which shows that deg f is well-defined indeed.

Proposition 5.34. If deg f 6= 0, then f is surjective.

Proof. Since M is compact and N is Hausdorff, f(M) is closed in N , cf. the proof of Corol-
lary 3.19. Hence, if f is non-surjective, then N \ f(M) is an open non-empty subset. We can
therefore choose ω ∈ Ωk(N) such that

∫
N
ω = 1 and suppω ⊂ N \ f(M). Then we must have

deg f =
∫
M
f ∗ω = 0. �

L 10

Let n ∈ N be a regular value of f (recall that Sard’s theorem guarantees the existence of
regular values). Since f−1(n) ⊂ M is closed, this must be compact as a closed subset of a
compact space. Since n is a regular value, f−1(n) is in fact a finite set, see the proof of Step 4
of Theorem 2.29, that is

f−1(n) = {m1, . . . ,m` }.
To any point mj we assosiate “a sign”, that is a number εj = ±1 as follows. Let ϕα be a chart
on M centered at mj and ψµ be a chart on N centered at n. If Fαµ is a coordinate representation
of f with respect to these charts, then detFαµ ∗(0) 6= 0, since n is a regular value. Set

εj := sign
(

detFαµ ∗(0)
)
.

We wish to show that εj does not depend on the choice of charts. Thus, let ϕβ and ψν be
any other charts from the oriented atlases of M and N respectively. Then the required property
follows from the following computation:

Fβν = θNνµ ◦ Fαµ ◦ θ
M
αβ =⇒

sign
(

detFβν ∗(0)
)

= sign
(
θNνµ ∗(0)

)
sign

(
θMαβ ∗(0)

)
sign

(
detFαµ ∗(0)

)
= sign

(
detFαµ ∗(0)

)
With this understood, we have the following result.
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Theorem 5.35. If n is a regular value of f , then

deg f =
∑̀
j=1

εj =
∑

m∈f−1(n)

ε(m).

In particular, deg f ∈ Z.

Proof. Since n is a regular value of f , there exists a neighbourhood V of n and neighbourhoods
Uj of each mj such that f : Uj → V is a diffeomorphism, compare with the proof of Step 4 of
Theorem 2.29. Without loss of generality, we can assume that each Uj and V are domains of
some charts (Uj, ϕj) and (V, ψ).

By the argument given at the beginning of this section, there exists a k-form on N such that∫
N

ω = 1 and suppω ⊂ V.

Hence, f ∗ω is supported on U1 t · · · t U`. In particular,

deg f =
∑̀
j=1

∫
Uj

f ∗ω

Furthermore, denote
(
ψ−1

)∗
ω = η ∈ Ωk(Rk) and ξj := ψ ◦ f : Uj → ψ(V ). Since f : Uj →

V is a diffeomorphism, (Uj, ξj) is a chart on M . If this chart is positively oriented, then∫
Uj

f ∗ω =

∫
ξj(Uj)

(
ξ−1
j

)∗(
f ∗ω

)
=

∫
ξj(Uj)

(
f ◦ ξ−1

j

)∗
ω =

∫
ξj(Uj)

η = 1.

Exercise 5.36. Show that if (Uj, ξj) is negatively oriented, then∫
Uj

f ∗ω = −1.

By noticing that (Uj, ξj) is positively (negatively) oriented if and only if εj is positive
(negative), we obtain ∫

Uj

f ∗ω = εj =⇒ deg f =
∑̀
j=1

εj,

which finishes the proof of this theorem. �

Remark 5.37. Theorem 5.35 should be compared with (2.32), where all points were counted
with the “+” sign. The reason this worked, is that for any holomorphic function each point
counts positively indeed, so that (2.32) is the degree of (2.30) in the sense of Definition 5.32.
Thus, in some sense Theorem 5.35 is a pretty powerful and far reaching generalization of the
proof of Theorem 2.29.

Remark 5.38 (A short proof of the fundamental theorem of algebra). With the technology we
developed up to this point, the proof of the fundamental theorem of algebra can be made pretty
short. Indeed, if f : S2 → S2 is defined by (2.30), then by Sard’s theorem f admits a regular
value n 6= N . Since f−1(n) 6= ∅ by the proof of Step 5 of Theorem 2.29, deg f is positive
since each point in f−1(n) counts positively. Hence, f is surjective by Proposition 5.34. This
immediately implies that p is surjective. In particular, p has a root.
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Chapter 6

Further developments

In this chapter I gathered some further developments of the ideas discussed in the previous
sections. The proofs are very sketchy (if any) and the reader is advised to check the references
for further details.

6.1 The hairy ball theorem
An interesting corollary of the ideas, which were discussed in Section 5.6 is the following result.

Theorem 6.1. Any vector field on S2n has at least one zero.

This theorem is known as the hairy ball theorem due to the following formulation: "You
can’t comb a hairy ball flat without creating a cowlick".

Theorem 6.1 is particularly striking when compared with the following observation: Any
odd-dimensional sphere admits a nowhere vanishing vector field. Indeed, an example of such a
vector field on S2n+1 is given by

v
(
x0, x1, . . . , x2n, x2n+1

)
=
(
− x1, x0, . . . ,−x2n+1, x2n

)
.

Definition 6.2. Two smooth maps f0, f1 : M → N are said to be (smoothly) homotopic, if there
exists a continuous map h : M × [0, 1]→ N such that each ht := h

∣∣
{t}×M is smooth and

h0 = f0 and h1 = f1.

In this case we write f0 ' f1. The map h is called a homotopy between f0 and f1.

The proof of the hairy ball theorem is based on the following simple result, which is of
independent interest.

Lemma 6.3. If f0 and f1 are homotopic, then deg f0 = deg f1.

Proof. Let f0 and f1 be two homotopic maps and h be a homotopy. Clearly, the map

t 7→
∫
M

h∗tω

is a continuous function on [0, 1]. By Theorem 5.35 this function takes values in the discrete
space Z and therefore must be constant. In particular,

deg f0 =

∫
M

h∗0ω =

∫
M

h∗1ω =

∫
M

f ∗1ω = deg f1.

�
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Proof of the hairy ball theorem. The proof consists of the following two steps.

Step 1. The degree of the antipodal map on an even dimensional sphere equals −1.

A direct computation shows that the coordinate representation of the antipodal map with
respect to the chart

(
S2n \ {S}, ϕS

)
is

H1 := ϕS ◦ h1 ◦ ϕ
−1
S , H1(y) = − 1

|y|2
y = −θSN(y), y ∈ R2n \ {0},

cf. (1.3). Since θSN is a diffeomorphism, for each z ∈ R2n \{0} there is a unique y ∈ R2n \{0}
such that H1(y) = z. Moreover, by (a generalization of) Example 5.20 (b), we have

detH1 ∗(y) = det θSN ∗(y) < 0 =⇒ deg h1 = −1,

where we have used Theorem 5.35.

Step 2. Assume S2n admits a nowhere vanishing vector field v. Then the degree of the atipodal
map must equal 1.

Think of v as a map S2n → R2n+1 satisfying

〈v(x), x〉 = 0 for all x ∈ S2n.

Since v vanishes nowhere, the map v̂(x) := v(x)/‖v(x)‖ is also a vector field on S2n satisfying
‖v̂(x)‖ = 1 for all x ∈ S2n. In particular, we can view v̂ as a map S2n → S2n.

Define a map

h : S2n × [0, 1]→ S2n by h(x, t) := x cos(πt) + v(x) sin(πt).

Since 〈v̂(x), x〉 = 0, we have ‖h(x, t)‖2 = cos2(πt) + sin2(πt) = 1 so that h takes values in
S2n indeed.

Furthermore, since
h0(x) = x and h1(x) = −x,

h is a homotopy between idS2n and the antipodal map h1. Hence, by Lemma 6.3 we obtain

1 = deg idS2n = deg h1.

This finishes the proof of this step and the proof of the hairy ball theorem, since the conclusions
of the above two steps contradict each other. �

6.2 The Euler characteristic
Let M be an oriented manifold of dimension k.

Let v be a vector field on M such that v(m0) = 0 and v(m) 6= 0 for all m 6= m0 from some
neighbourhood V of m0. In this case we say that m0 is an isolated zero of v.

Choose a chart (U,ϕ) centered at m0. The coordinate representation v =
∑k

j=1 vj(x) ∂j
yields a map

Rk → Rk, x 7→
(
v1(x), . . . , vk(x)

)
, (6.4)
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which is well-defined on a closed ball Br0(0) for some r0 > 0 sufficiently small and vanishes
nowhere except at the origin. For any r ∈ (0, r0) consider the map

hr : Sk−1 → Sk−1, hr(m) =
1√

v1(rm)2 + · · ·+ vk(rm)2

(
v1(rm), . . . , vk(rm)

)
,

where m ∈ Sk−1. In other words, hr is essentially the restriction of (6.4) to the sphere of radius
r normalized so that this maps into Sk−1.

Definition 6.5. Let m0 be an isolated zero of v. The integer

I(v,m0) = deg hr

is called the local index of v at m0.

Notice that by Lemma 6.3, I(v,m0) does not depend on r, since hr and hρ are manifestly
homotopic provided r, ρ ∈ (0, r0). Also, the local index does not depend on the choice of the
chart near m0 [BT03, Lemma 7.3.8].

Assume in addition thatM is compact and that v has isolated zeros only. Hence, the number
of zeros is finite.

Theorem 6.6. Let v be a vector field on a compact oriented manifold with isolated zeros only.
The integer

χ(M) :=
∑

m∈ v−1(0)

I(v,m0) (6.7)

does not depend on v and is called the Euler characteristic of M . �

The above theorem is a corollary of the so called Poincaré–Hopf theorem [BT03, Thm 7.6.5].
Notice that in the Poincaré–Hopf theorem as stated in [BT03] the Euler characteristic is defined
as a certain topological invariant of M a priory unrelated to vector fields. I have taken the
liberty to define the Euler characteristic by (6.7), which makes obscure that that this number is
independent of v.

6.3 On the classification of manifolds
Let M1 and M2 be two connected oriented manifolds of dimension k. Choose mj ∈ Mj and a
chart (Uj, ϕj) centered at mj . Assume that B1(0) ⊂ ϕj(Uj) and denote ψj := ϕ−1

j : B1(0) →
Mj . Using the diffeomorphismB1(0)\{0} ∼= Sn−1×(0, 1), we can vie ψj as a diffeomorphism
Sn−1 × (0, 1)→ ψj

(
B1(0)

)
\ {mj}.

Definition 6.8. The space

M1#M2 :=
(
M1 \ {m1} t M2 \ {m2})/ ∼, where

ϕ1(x, r) ∼ ϕ2(x, 1− r), x ∈ Sn−1 and r ∈ (0, 1),

is called the connected sum of M1 and M2.

Figure.

It can be shown that M1#M2 is again an oriented manifold of dimension k. Moreover,
M1#M2 does not depend on the choices involved in the construction (meaning the following:
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For any other choice of pointsmj and charts (Uj, ϕj) as above the results of the above construction
are diffeomorphic).

Denote
Σ0 = S2, Σ1 = T2, Σ2 = T2#T2, . . . , Σg = #gT2. (6.9)

The number g is called the genus of Σg.

Theorem 6.10. The Euler characteristic of Σg is given by

χ(Σg) = 2− 2g.

�

Notice that the hairy ball theorem follows from Theorems 6.10 and 6.6. In fact, these two
theorems imply that any vector field on any surface Σg has at least one zero except in the case
g = 0.

Theorem 6.11 (Classification theorem for compact orientable surfaces). (6.9) is a complete list
of compact connected orientable surfaces (i.e., 2-manifolds). This means that each compact
connected orientable surface is diffeomorphic to exactly one surface from (6.9). In particular,
Σg is diffeomorphic to Σh if and only if g = h. �

Related to this is the following more elementary result.

Theorem 6.12 (Classification of curves). Each connected curve (i.e., 1-manifold) is diffeomor-
phic either to the interval (0, 1) or to the circle S1.

Proof. See [Mil65] or [GP74]. �

A classification of compact manifolds in all dimensions is unknown up to now, however
many interesting results are known. Below is a selection of some of those.

Theorem 6.13 (Milnor’56). There are smooth 7-manifolds, which are homeomorphic but not
diffeomorphic to S7. �

Later, Kervaire and Milnor showed that there are exactly 28 seven-manifolds, which are
homeomorphic but not diffeomorphic to S7. It is even possible to give explicit examples of
such manifolds. For example,

Ma :=
{
z ∈ C5 | z2

1 + z2
2 + z2

3 + z3
4 + z6a−1

5 = 0
}
∩ S9

r ,

where r � 1 and a = 1, 2, . . . , 28, are such examples.
A lot is known about manifolds, which are homeomorphic but not diffeomorphic to Sn

for other values of n. For example, any three-manifold, which is homeomorphic to S3 must
be in fact diffeomorphic to S3. However, it remains unknown up to now, if there is a four-
manifold, which is homeomorphic but not diffeomorphic to S4. In contrast, Taubes showed in
1987 that there are uncountably many smooth four-manifolds, which are homeomorphic but not
diffeomorphic to R4. This fascinating story goes, however, far beyond the goals of this course.
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6.4 The Gauss map
Let V be a finite dimensional vector space. Two bases v and w of V are said to be cooriented
if detB > 0, where w = v · B. Otherwise, we say that v and w have opposite orientations.
An orientation of a vector space is a choice of one of the two classes of cooriented bases. For
example, the standard basis of Rk determines a standard orientation of Rk.

If M is an oriented manifold, we can orient each tangent space TmM as follows. Picking a
chart (U,ϕ) from the oriented atlas containing m, we obtain a basis

∂(m) =
(
∂1, . . . , ∂k

)
(6.14)

of TmM . It follows from the definition of the oriented atlas and (4.4) that any other basis
obtained in this way is cooriented with (6.14). Thus, any tangent space of an oriented manifold
is oriented.

With this understood, assumeM2 is an oriented surface, which is a submanifold of R3. Then
for each m ∈M there is a unique vector n(m) ∈ R3 with the following properties: |n(m)| = 1
and

(
n(m), v1, v2

)
is an oriented basis of R3 provided (v1, v2) is an oriented basis of TmM . In

fact, we must have
n(m) =

v1 × v2

|v1 × v2|
,

where × denotes the cross-product in R3. It follows that n depends smoothly on m, that is the
map

G : M → S2, G(m) := n(m)

is smooth. This is called the Gauss map.
One can show that the following interesting result holds.

Theorem 6.15 ([BT03, Cor. 7.6.6]). If M2 is a compact connected oriented surface embedded
in R3, then

degG = χ(M).

�

Furthermore, define ω ∈ Ω2(S2) as follows: for any pair of vectors v1, v2 ∈ TmS2 set

ω
∣∣
m

(v1, v2) := dx1 ∧ dx2 ∧ dx3

(
G(m), v1, v2

)
,

where Ḡ is the Gauss map of the standard embedding S2 → R3 (that is, Ḡ(x) = x). Hence, we
obtain

χ(M) = degG =

∫
M

G∗ω. (6.16)

It turns out that the 2-form G∗ω ∈ Ω2(M) depends only on the “inner geometry” of M in
the following sense: Each tangent space TmM inherits a scalar product 〈·, ·〉m, which depends
smoothly on m, that is the Gram matrix of this scalar product with respect to any basis of the
form (6.14) has smooth entries. ThenG∗ω depends only on this scalar product but not (directly)
on the embedding into R3. This 2-form is called the curvature of M and is a local invariant of
M , that is its value at m can be computed by knowing the scalar product in any neighbourhood
ofm. On the contrary, χ(M) characterizesM as a whole object and (6.16) is a beautiful relation
between these local and global properties of M . This is known as the Gauss-Bonnet theorem,
which is one of the most beautiful results in mathematics.
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