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Chapter 1

Introduction

A substantial part of mathematics is related to solving equations of various types. Given any
equation, we may try to analyze this by studying the following sequence of questions:

1. Does there exist a solution (a root)?

2. If the answer to the previous question is affirmative, how many solutions does the equation
have?

3. If there are finitely many solutions, can we find all of them?

For example, the reader learned at school the properties of the quadratic equation ax? 4 bx +
¢ = 0. In this case the above questions are easy to settle and the answers are well known to the
reader.

Sometimes an equation may have an infinite number of solutions. If there are only countably
many roots, the last question from the list above still makes sense. For example, all solutions of
the equation sin x = ( are given by a simple formula: z,, = 7n, n € Z.

In many cases, however, equations have uncountably many solutions so that asking to find
all solutions is not really meaningful. Instead, it turns out to be more interesting to replace
Question 3 by the following one:

3’. What are the properties of the set of all solutions?

Which particular properties we are interested in may depend on the context. The property
most relevant to the content of this course is concerned with the local structure of the set of all
solutions.

Let us consider an example. The equation

r] 4+ 25+ 25 =1, (1.1

where 71, x2, x3 € R, clearly has uncountably many solutions.

Denote S? := {z = (v, 29,23) € R® | 22 + 22 + 23 = 1}, that is S? is the set of all
solutions of (1.1). Of course, S? is the sphere of radius 1, however let us pretend for a moment
that we do not know this. As a subset of R3, S? is a topological space. It turns out that this
topological space has a very particular property, which we consider in some detail next.

The familiar stereographic projection from the north pole N := (0,0, 1) is given by

on: S\ IN} = R, @N(x):( oo™ )

1—1’3 1-.%3

This is in fact a homeomorphism with the inverse

1
S (2y1, 290, —1+ 45 + 5 ), y = (y1,92) € R (1.2)

—1 o



Differential Geometry I

We can also define a stereographic projection from the south pole S := (0,0, —1) by

. Q2 2 . T Hp)
ps: NS 2R os(o) = (1 7o)
which is also a homeomorphism.

Since any point on the sphere lies either in S\ { N} or S?\ {S} (or both), any point on the
sphere has a neighbourhood, which is homeomorphic to an open subset of R™ (of course, n = 2
in our particular example and the open subset is R? itself). This property leads to the notion of
a manifold, which will play a cenral role in the course. We will see below, that this property is
not specific to Equation (1.1). On the contrary, for any smooth map F': R¥ — R’ and almost
any ¢ € R’ the set of all solutions to the equation F'(z) = c is a manifold. That is, there is a
huge pull of examples of manifolds and many objects of particular interest in mathematics turn
out to be manifolds.

Coming back to our example, we compute:

-1 Y1 Y2
eseon ) = (T s ) (1.3)
v = (L e

Hence, pgo@y is smooth on an open subset R?\ {0} and a similar computation yields that this is
also true for ¢ yopyg'. This property can be used to study smooth functions on the sphere directly
without reference to the ambient space. More importantly, in more general situations where the
ambient Euclidean space may be simply absent, an analogue of this property allows one to apply
familiar tools of analysis to functions defined on more sophisticated objects than just subsets of
an Euclidean space. In some sense, this constitutes the core of differential geometry.

Summing up, the aim of these notes is to transfer familiar tools of mathematical analysis to
a more geometric setting where the underlying domain of a function (map) is not just an open
subset of R", but rather a manifold. The benefits of doing so are ubiquitous, but explaining this
in some detail requires a bit of work. It is my hope to convey that the notion of a manifold is
useful and well worth studying further.
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Chapter 2

Smooth manifolds

2.1 Basic definitions and examples

Recall that a topological space M is called Hausdorft, if for any two distinct points my, ms € M
there are neighbourhoods Uy > my and Us 3 ms such that U; N U, = &. If the topology of
M admits a countable base, then M is said to be second countable. For example, R* is both
Hausdorff and second countable.

Definition 2.1. A Hausdorff second countable topological space M is called a fopological
manifold of dimension k, if M is locally homeomorphic to R¥.

To explain, this means that any point m € M admits a neighbourhood U and a homeomorphism
¢: U — V, where V is an open subset of R*. The pair (U, ) (or, sometimes just U) is called
a chart on M near m.

Notice that the requirements that a manifold is Hausdorff and second countable are to a great
extent of technical nature, whereas being locally homeomorphic to R* is a crucial property of
manifolds.

Clearly, R¥ and in fact any open subset of R¥ are examples of topological manifolds of
dimension k. As we have established in the introduction, 2-spheres are manifolds of dimension
two. Similar arguments yield in fact that the k-sphere

k+1

Sk = {(xl,...,ka) c R*1 | Zx? = 1}

i=1

is a k-manifold.

Somewhat special is the case of dimension zero. Since RY is by definition a single point, the
above definition requires that each point of M has a neighborhood consisting only of this point.
In other words, M is a countable discrete space.

Definition 2.2. A collection of charts U = {(U,,¢) | a € A} is called a C?-atlas, if
Uaea Ua = M, that is if any point of M is contained in some chart. Here A is an arbitrary
index set.

For example, R¥ admits a C?-atlas consisting of a single chart (R, id). In the introduction
we have constructed a C?-atlas on the 2-sphere consisting of two charts. However, there is no
CP-atlas on S? consisting of a single chart, since S? is not homeomorphic to an open subset of
R? (why?).
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Given a C-atlas U, pick any two charts (U,, ¢,) and (Ug, @) such that U, N Uz # 2. The
map
Oop = Qo © 9051: 03(Us NUg) = pa(Us NUR), (2.3)

which a homeomorphisn between two open subsets of R, is called a coordinate transformation'.
Notice that 6g, is the inverse map to 6,5. In particular, 6,5 is a homeomorphism between
gOg(Ua N Ug) and @a(Ua N Uﬁ)

It is a common practice to suppress the domain and the target of 6,5 writing simply 0,5 =
Do © gpgl. While this may be confusing at first, the advantage is that this allows us to suppress
less important details so that the most essential features are clearer. If in doubt, the reader
should write the domain and target explicitly.

Definition 2.4. A C°-atlas I/ is called smooth, if all coordinate transformation maps Oap, v, B €
A, are smooth.

Remark 2.5. Equally well, we can say that I/ is a C*-atlas, if all coordinate transformation maps
belong to C*(R"; R") (keep in mind that these are defined on open subsets of R™ only) for some
fixed natural number ¢. The theory does not depend much on the choice of ¢ as long as ¢ is not
too small. In practice ¢ > 3 would suffice in most of the cases, however to avoid non-essential
details it is convenient to put ¢ = oo from the very beginning.

Two charts (U, ) and any (V, 1) not necessarily from the same atlas are said to be smoothly
compatible if the maps

pop™"  and oy (2.6)

are smooth, compare with (2.3). We consider two atlases ¢/ and ) as “essentially equal”, if
all charts from ¢/ are smoothly compatible with all charts in V. More formally, we have the
following definition.

Definition 2.7. Two atlases / and V on the same underlying topological space M are called
equivalent, if &/ UV is a smooth atlas on M, that is if all charts from ¢/ are smoothly compatible
with all charts in V. An equivalence class of atlases is called a smooth structure on M. A smooth
manifold consists of a Hausdorff second countable topological space and a smooth structure.

To explain the point of the above definition, consider the 2-sphere. In the introduction we
constructed a smooth atlas on 5%, namely U := {(S?\ {N}, ¢n), (S*\{S}, ¢s)}. However,
there are many ways to construct another smooth atlas, for example as follows:

u/ = {52 \ {N}7¢N} U {(Siv 90+)}
Here 52 := {z € 5% | z3 > 0} and ¢ (z) = (21, 2).
Exercise 2.8. Check that I/’ is a smooth atlas equivalent to /.

It should be intuitively clear, that the description of S? via smooth atlases I/ and U’ are
‘essentially equal’. Hence, it is natural to identify (S?,U) and (S?,U").

An atlas U is called maximal, if for any chart (V1)) smoothly compatible with all charts in
U 1s already contained in U.
The importance of maximal atlases stems from the following result.

Lemma 2.9. Each equivalence class of smooth atlases is represented by a unique maximal
atlas.

!"The origin of this terminology will be clear below.
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Proof. For a smooth atlas ¢/ on M define
Upaz = {(V, 1) is a chart on M s.t. (2.6) are both smooth for all (U, ) € U }.

Exercise 2.10. Check that U4,,,,, is a smooth atlas on M.

By the construction of U, we have U C U,,,.. Hence, any chart smoothly compatible
with any chart in U,,,, is also smoothly compatible with any chart in ¢/ and therefore is
contained in U,,,,. Hence, U,,,, is maximal. Clearly, / and U,,,, represent the same smooth
structure. O

By the above lemma, a smooth manifold may be considered as being equipped with a
maximal atlas. In particular, if ¢/ is any smooth atlas on M, we may freely add any chart
smoothly compatible with all charts in ¢/ without changing the smooth structure. For example,
if (U, ) is a chart near my, then (U, ¢) with
p(m) = (m) — @ (mo)

is also a chart near my € M smoothly compatible with all charts in /. The chart (U, ¢) satisfies
@(mo) =0,
which is commonly expressed by saying that (U, @) is centered at m.

Remark 2.11. In what follows only smooth manifolds will be considered. Therefore, by saying
that M is a manifold, we always mean a smooth manifold, unless explicitly stated otherwise.

Let us finish this section with some further examples of manifolds.

Example 2.12 (Products). Let M and N be smooth manifolds of dimensions & and ¢ respectively.
LetU = {(Us,a) | @ € A} and V = {(Vi, %)) | A € A} be smooth atlases on M and N
respectively. Then the product M x N is a Hausdorff second countable topological space. We
define a C%-atlas on M x N by setting

W= (Us X Vi, 0o X\) |a€e A, A€ Ay,
{( )

Given any two charts (U, x Vi, o X1y) and (Usx V,,, @gx1,) the corresponding coordinate
transformation is given by 0,3 X 1), where 0,3 = @, © gpgl and 7y, = ¥y ° w;l are smooth
maps. More precisely, this means the following:

O X M R x RY — RY x R,
eaﬁ X 77/\u($,y) = (0a5<1’), nku(y))v T e Rka ) € RK-

In particular, 6,5 X 7y, is a smooth map, which means that the atlas constructed above is
smooth. Hence, M x N is a smooth manifold of dimension k + ¢. This yields in particular that
the following

(i) the k-dimensional torus T* := S x --- x S' and
(i) the cylinder R x S*

are smooth manifolds. In the latter case, the dimension of R x S! equals 2.
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Example 2.13 (Real projective spaces). The real projective space RP* of dimension £ is defined
to be the set of all lines in R**! through the origin. Since each line through the origin is uniquely
determined by a point on this line distinct from the origin, we have

RP* = (R*1\ {0})/ ~,

where z,y € R*1\ {0} are defined to be equivalent if and only if there exists A\ € R\ {0}
such that y = Ax. In particular, we have the canonical surjective quotient map

m: RFFI\ {0} — RP*, m(z) = [z].

If v = (zg,71,...,7) € REFL\ {0}, it is customary to write [z : ; : ... : 23] for [z].

We endow RP* with the quotient topology, that is U C RP* is open if and only 7 HU) is
open in R¥1\ {0}. It is straighforward to check that this yields a Hausdorff second countable
topological space.

To construct a C?-atlas on RP¥, observe that each

Uj::{[mo:xlz...:xk]G]R]P’k|xj7é0}, j=0,1,... k,
is an open subset of RIP*. Indeed, this follows from the fact that

™ (U;) = {([EO, xg) € RFFLY {0} | z; # 0}

is an open subset of RF+1\ {0}.

The map
©j: Uj — Rk,
PilTo X1 ... P Tj—1 - Lj P Xjg1 0.0 Tk xj,xj,..., :Ej7 xj,...,xj
is well-defined and continuous. Moreover, the map
Vi RN = Up i(hovns - yme1) = [Wor vns sy Ly ot ge] (2.14)
is a continuous inverse of ;, that is ¢; is a homeomorphism. Since the collection Uy, . .., Uy

clearly covers all of RP*, U := {(U;, ;) | j =0,1,...,k} is a C%-atlas on RP*.
Next, let us consider the coordinate transformations. To simplify the notations we consider
only the map 0y, = @ ;" = @g o 1. We have

1 y Yk
001(y07"'7yk—1) :@0<[y0 : 133/1,--~7?/k—1]) = <_’_17“‘7£>7
Yo Yo Yo

which is smooth on
e1(UonUp) = {y € R* | yo # 0}.

A similar argument yields that all coordinate transformations 6;; = ¢; © ¢; are smooth on their
domains of definition. Thus, ¢/ is a smooth atlas and RP¥ is a smooth manifold of dimension k.

It may be useful to keep some non-examples of manifolds in mind.
(a) The set M = {(z,y) € R? | 22 = y?} consisting of two straight lines y = +=x
intersecting at the origin, is not a manifold. Indeed, if M were a manifold, its dimension

must be one. However, the origin does not have a neighbourhood in A/ homeomorphic to
an open subset of R! (Why?).
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(b) A disjoint union of manifolds is a manifold. However, a disjoint uncountable union of
non-empty manifolds is not a manifold, since the second countability axiom is violated.
For example, the disjoint union of real lines labeled by a € (0, 1)

N = |_| R,
)

ag(0,1

is not a manifold. Notice that the above example is nor homeomorphic to (0,1) x R,
which is a manifold indeed, since, for example, each line R, C NV is an open subset.

(c) Consider the following line “with a double point™:
L :=(—00,0)U{a,b} U (0,400).

Here {a, b} is understood as a set consisting of two distinct elements. The following two
subsets

U, := (—00,0) U{a} U (0, +0c0) and U, := (—00,0) U{b} U (0, +00)

cover all of L. Define ¢,: U, — R by p,(z) = x if x # a and p,(a) = 0. By the same
token we can define p;,: U, — R.

A topology on L is defined simply by saying that V' is open if and only if ¢,(V NU,) and
(VN Uy) are open in R.

This yields a second countable topological space with a smooth atlas. However, L is
non-Hausdorff.

2.2 Smooth maps

Given a smooth structure on M, we can make sense of smoothness of functions defined on M
as follows.

Definition 2.15. Let M be a manifold with a smooth structure represented by a smooth atlas
U = {(Uy,pa)}. A function f: M — R is said to be smooth, if for any chart (U,, ¢,) the
function f o o 1: R¥ — R is smooth.

Notice that since an open subset V' of M is again a smooth manifold, it makes sense to
say that a function is smooth on V. The smoothness of functions is then a local property in
the following sense: f is smooth if and only if the restriction of f to any open subset of M is
smooth. In particular, if {V,, | « € A} is an open covering of M and f is smooth on each V/,,
then f is smooth on M.

Strictly speaking, we still have to show that the notion of smoothness in Definition 2.15 is
independent of the choice of an atlas. Indeed, assume that f is smooth with respect to ¢/ and
pick an atlas V = {(V,,v,)} equivalent to &. Then on ¢,(U, N'V,) C R™ we have

Fovu ywarvy = Fo9a ooy vy = 290’ 2 Ganly, womy
where 0,, = ¢4 © 1/);1 is a smooth map. Hence, f is smooth with respect to ) on any subset
U, N'V,. Since these subsets cover all of M, f is smooth on M with respect to V.
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Example 2.16. Let F': R? — R be any smooth function. Define f: S? — R as the restriction
of F to 5% I claim that f is a smooth function on S2. Indeed, let (U, ) be any chart on S?
constructed in the introduction. For concreteness, let us pick the chart (S 2\ {N} o N). Then

211 AT —1+9y +y3 >

) ) (ybyQ)ERz‘
L+yi+ys 1+ +v3 1+yi+us

feoon (1) = F(

Hence, f o ¢ is smooth and it is clear that this is also the case for (52 \ {S}, ¢s). Thus, f is
a smooth function on S2.

Example 2.17. Let F': R¥™1\ {0} — R be a smooth homogeneous function of degree 0, that
is F(Ax) = F(z) forall A\ € R\ {0} and z € R**'\ {0}. Define f: RP* — R by setting
f([z]) = F(z). This yields a well-defined function, which I claim is smooth. Indeed, pick any
chart (Uj;, ¢;) constructed in Example 2.13. Using (2.14), we obtain

f © (pj_l(y07 s 7yk—1) = F(yo, e Yi—1, 17 Yjyo-- ayk‘—l)a
which is smooth everywhere on R*. Hence, f is smooth.

Proposition 2.18. The set C*°(M) of all smooth functions on a manifold M is an algebra, that
is

* f,g € C¥(M), \,p € R = A + g € C*(M);
s [,geC®(M) = f-geC>®(M).

Proof. Let f, g be any two smooth functions and A, i two real numbers. For any chart (U, ¢)

the functions . ) )
(M +ug)ep™ =AMfeop™t) +ulger™),
(f-g)ep™ =fop-gop™
are clearly smooth, hence A f + pg and f - g are smooth functions on M. 0

Let f: M — R’ be a map, which can be written as an /-tuple of functions: f = (f1,..., fo).
We say that f is smooth, if each component f; is a smooth function on M.

It is also possible to define the notion of smoothness for maps between manifolds. To this
end, let M and N be two manifolds of dimensions %k and ¢ respectively. Pick an atlas ¢/ on M
and an atlas VV on V.

Definition 2.19. A continuous map f: M — N is said to be smooth, if for any (U, ¢) € U and
any (V,v) € V the map

Yo fop l:RF 5 R
is smooth.

Remark 2.20. The requirement that f is continuous in the above definition is only needed to
ensure that ¢ o f o ¢! is defined on an open subset of R¥. The map v o f o ¢! is called the
coordinate presentation of f (with respect to charts (U, ) and (V, )).

The argument used to verify that the notion of smoothness of a function is well-defined is
very common in the theory of manifolds and will be typically omitted below. However, the
reader may wish to prove the following proposition as an exercise.

Proposition 2.21. If f: M — N and g: N — L are smooth maps between smooth manifolds,
then g o f is also smooth. O
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Definition 2.22. A smooth map f: M — N such that f~1: N — M exists and is also smooth
is called a diffeomorphism.

Observe that if (U, ¢) is a chart, then ¢: U — o(U) C R¥ is a diffeomorphism.
To obtain a somewhat non-trivial example of a diffeomorphism, consider the tangent function:

sinx

tan: (—7r/2, 7r/2) — R, tan(z) =

cosT

This is smooth, bijective, the inverse function arctan exists and is smooth. Hence the interval
(—m/2, 7/2) is diffeomorphic to R. In fact any open interval is diffeomorphic to R (Why?).
A standard non-example is given by the map

f:R—=R, f(z) =2,

which is clearly smooth and bijective. The inverse map however fails to be smooth at the origin
so that f is not a diffeomorphism.

If there exists a diffeomorphism between M and N, we say that M and NV are diffeomorphic.
Notice that in this case we must have k = dim M = dim N = /. Indeed, if f is a diffeomorphism
between M and N, then F := 1) o f o o~ ! is a diffeomorphism between open subsets of R* and
R’. Let us denote G := F'~' = po f~1o4)~1, which is smooth by the definition of smoothness
for f~!. Diferentiating G o ' = idgx at the point G(z), we obtain

ide = Dg(x)(lde) == Dg(x) (G o F) = DF(G(z))G . Dg(m)F == DxG . D(;(;E)F,

where idgx is the identity map. In particular, DG is surjective at each point. Furthermore, by
a similar argument applied to the identity F' o G = idge¢, we obtain that DG is injective at each
point. In other words, D, G : R* — R* is a linear isomorphism, which is only possible if k = /.

Definition 2.23. A map f: M — N is called a local diffeomorphism, if for any point m € M
there exists an open neighbourhood U 3 m in M and an open neighbourhood V' 3 f(m) in N
such that

f | g U=V

is a diffeomorphism.

A non-trivial example of a local diffeomorphism can be obtained as follows. The map
fiR—SY f(z) = (sinz, cosz)

is a local diffeomorphism (why?), which is not a diffeomorphism, since f(0) = f(£27) =
f(£dm)=...
A non-trivial result from the course of analysis we need here is the following.

Theorem 2.24. Let U be open in R" and f: U — R¥ be smooth. Assume that at some v € U
the differential D, f of f is invertible. Then n = k and f is a local diffeomorphism at x, that is
there exist open subsets U' > x and V' > f(x) such that

f }U/: U —V
is a diffeomorphism.

A proof of this theorem can be found for example in [BT03, Thm 9.4.1].
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2.3 The fundamental theorem of algebra

As an application of the notions introduced in the preceding sections, we prove the fundamental
theorem of algebra in this section. This requires some additional notions and constructions,
which are of independent interest.

Let M and N be two manifolds of dimensions k and ¢ respectively. Pick a smooth map
f: M — N,apoint m € M and charts (Uy, ¢o) and (Vy, 10g) such that m € U and f(m) € V.

Definition 2.25. We say that m is a critical point of f if the differential of the coordinate
representation

Dgoom) (Y02 f = 5") (2.26)
is non-surjective at pg(m).

Lemma 2.27. The notion of a critical point is well-defined, i.e., this is independent of the choice
of charts.

Proof. Pick any charts (Uy, ¢1) and (V4,4 ) such that m € U; and f(m) € V;. We have
Yoo fowy' =dootit oo fopitopriopyt =65 o (diofopl) 0,

which is valid on an open subset containing m. Hence, by the chain rule, we obtain for the
differentials

D(to o fowg') =Dl o Do fopr') o DO,
Since Dﬁg)l and D@5, are invertible everywhere on the domain of their definition, we obtain that
D(¢0 o fowy 1) is non-surjective at ¢o(m) if and only if D(¢1 ofo gol_l) is non-surjective at
¢1(m). This finishes the proof of this lemma. O

Definition 2.28. Any non-critical point is called regular. We say that n € N is a regular value
of f,if f~!(n) consists of regular points only. If f~!(n) contains at least one singular point,
then n is called a singular value of f.

Let me stress that any point, which does not lie in the image of f, is a regular value of f
(this fact of course follows from the definition but may be easily missed at first).

Notice that in the particular case k = /£, (2.26) is a linear map R* — R*. Hence, (2.26) is
non-surjective if and only if it has a non-trivial kernel, or, still if and only if det D () (@/JO ofo

—1
(po ) - O.
With these preliminaries at hand, we can prove the following.

Theorem 2.29 (The fundamental theorem of algebra). Let p(z) := ap2* + ap_12¥ 1 + -+ +
a1z + ag be a polynomial with complex coefficients of degree k > 1. Then p has at least one
(complex) root.

Proof. 1dentify R? with C by writing
Y= (Y1,92) =1+ yai = 2.

For a fixed polynomial p = a,z* + - - + a2z + ag such that a;, # 0, where & > 1, define a map
f: 8% — S? by the rule

N ifz =N
= ' ’ 2.30
1 {soNl opogn(z), ifz#N. 20

The proof proceeds in a number of steps.
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Step 1. f is smooth.

It is enough to check that f is smooth near [V, i.e., that pg o f o gogl is smooth. To see this,
consider

psofows =psopy cpnofopy cpneps =0bsnopobsy,
which is valid on C \ {0}. By (1.3),

051\[(2) =

SIS
IR

Consequently, for z # 0 we have

1 1 2k

-1
(e} o Z) = = —= = = .
Ps f QOS() p(l/z) Z_];:++a_;+a0 dk—l—---+&1zk_1+dozk

Since pg o fops'(0) =0, pso fopg' is clearly smooth on C. Hence, f is smooth as claimed.

Step 2. The differential of the map z — p(z) at the point z can be identified with h — p'(z)h,
where
P(2) = kap2" ' + .. 2092 + ay.

Denote p(z) = u(y1, y2)+v(y1, y2)i. Since p is a holomorphic function of z, by the Cauchy-
Riemann equations we have

ou Ou hy ou ov

_— — —hy — —h
D (h): Oy1 Oys _ Oy ' o ?
RN IR B W B NP
Oy1 Oys 2 oy, ! o ?
ou ov ov ou
=(—h,— —h —hi+ —ho )i
<5‘y1 Loy 2>+<8y1 1+0y1 2>Z
dp
=—h=9p(2)h
o, P'(2)

Step 3. The set of critical values of f is finite.

Indeed, any critical point of f is either N or of the form ¢y (z), where z is a zero of the
polynomial

k—1

P (2) = kapz""' + ... 2a22 + ay.

Hence, the number of critical points of f is finite and therefore the number of critical values is
also finite.

Remark 2.31. Notice that N is a critical point of f as long as £ > 2, which we can assume
without loss of generality, since any polynomial of degree 1 obviously has a root.

Step 4. For any regular value x € S?, the number of points in f~'(z) is finite and independent
of x.

First notice that the set R(f) of regular values is open and connected as a complement of a
finite number of points in S2.

Furthermore, for any n € R(f) and any m € f~!(n), the map py o f oy’ = pisa
local diffeomorphism at ¢(m) by Theorem 2.24. Since ¢y is a homeomorphism, f is a local
homeomorphism at m. In particular, there is a neighbourhood U’ > m such that U' N f~1(n) =
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{m}. Thus, f~'(n) is discreet. Since S is compact, f~!(n) is also compact as a closed subset
of a compact space. Hence, f~!(n) must in fact be a finite set.
The above argument actually shows that the map

R(f)>xw— #f'(x) eEN (2.32)
is locally constant. Since R(f) is connected, this function must be constant.

Step 5. We prove this theorem.

Observe first that (2.32) cannot vanish everywhere on R(f). Indeed, the image of f is
obviously infinite, whereas the set of critical values is finite by Step 3. Hence, there are regular
values, which are in the image of f.

In fact, (2.32) vanishes nowhere as a locally constant function on an open connected space.
Hence, f~1(S) # @ as long as S € R(f). Also, if S is a critical value, then f~'(S) contains
at least one critical point. In either case, f~1(S) is non-empty, which means that p has at least
one root. UJ

The above proof turns out to contain a few ideas which can be used in other circumstances
too. However, this requires some technical results, which are proved first.

2.4 Tangent spaces

We begin with the following consideration. Let v be a smooth curve in R through some p € R¥,
that is a smooth map ~: (a,b) — R¥, such that y(¢o) = p for some ¢y € (a,b). Recall that the

tangent vector of v at p is
d
¥(to) == — t) € R
lto) = o], ()
Let now 7y be a smooth curve on the 2-sphere through some p € S?. Since S? is a subset of

R3, we may think of ~y as a curve in R? satisfying
N +5) +it) =1 Ve (ab). (2.33)
It is reasonable to call the set
T,58% .= {v € R? | v is the tangent vector of some smooth curve on S? through p}

the tangent space of S? at the point p.
To determine 7,,S? more explicitly, differentiate (2.33) with respect to ¢ and set ¢ = t:

Y1 (to)¥1(to) + v2(to)y2(to) + v3(to)Fs(to) =0 — (p,¥(to)) = 0.

In other words, the tangent vector of any smooth curve on S? through p is necessarily orthogonal
to p. Moreover, it is clear that any vector orthogonal to p arises in this way (consider all great
circles through p). Hence,
1,8 2=ph
However, for an abstract manifold M a smooth curve v on M does not lie in an Euclidean
space in any obvious way so that the above definition of 7},5? does not immediately generalize.
A nice workaround goes as follows.

Let v be a smooth curve through m € M. We can assume that 7 is defined on (—¢, ¢) for
some € > 0 and v(0) = m.
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Definition 2.34. Two smooth curves 7; and 7, through m as above are said to be equivalent, if
for some chart (U, ) such that m € U we have

d

dt

(pom(t)) = % (poa(t)). (2.35)

t=0

t=0

In other words, v; ~ 7, if and only if the smooth curves ¢ o y; and ¢ o, in R* (1) have the
same tangent vector.

Furthermore, an equivalence class of smooth curves is called a tangent vector at m. The set
T, M of all tangent vectors at m is called the tangent space at m.

Exercise 2.36. Show that the above equivalence relation is independent of the choice of a chart.

Exercise 2.37. Show that the tangent space to S at some p € S? in the sense of Definition 2.34
is pt.

While Definition 2.34 is has a clear geometric meaning, the algebraic structure of 7,, M
is opaque in this approach. For this reason we adopt an alternative definition, which is more

algebraic.
First notice that given any tangent vector [ through m we can define the map 9}, : C*°(M) —

R by setting

t=0 t—0 t

d
a[v](f) = dt

Proposition 2.38. The map 0, is well defined and has the following properties:

(i) O is R-linear, that is

Oy (M + 11g) = A0 (f) + 119 (9)
holds for all A\, ;s € Rand f,g € C*(M).

(ii) O}y satisfies
O (f9) = Oy(f)g(m) + f(m)0 (9)
forall f,g € C®(M).

Proof. We only need to prove that dj, is well-defined, since (i) and (ii) are clear from the
definition.

Thus, pick two smooth equivalent curves ; and +, through m. Pick also a chart (U, ) near
m and denote F' := fop ' RF — Rand 3; := po;: (—&,e) — R*. Notice, that

B1(0) = B2(0) =: v,

since 7y; and 7, are equivalent.
We have

d 0 (f"’h(t)) :%

where D, F' is the derivative of I in the direction of v, that is

(Feeovom®) = 2| (Fopi(t) = DF(pm),

dt t=0 t=0

D,F = -—v;=(VF V). (2.39)
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A similar computation yields also

% (f 072(15)) = D,F(p(m)),

thus demonstrating that 9;,) depends on the equivalence class of -y only as the notation suggests.
0

t=0

Motivated by the above proposition we give the following

Definition 2.40. An R-linear map 0: C*°(M ) — R satisfying the Leibnitz rule
9(fg) = 0(f) g(m) + f(m)d(g)  Vf g€ C*(M)

is called a derivation at m.

Notice that a constant function, which takes value 1 everywhere on )M, is annihilated by any
derivation. Indeed, this follows from the following computation:

o) =0(1*) =0(1) - 1+1-9(1) =209(1).

By the linearity of derivations, any constant function is annihilated by each derivation.
For the proof of Proposition 2.42 below, we need the following technical result, whose proof
is deferred till the next section.

Proposition 2.41. For any manifold M and any point my € M the following holds.

(i) Suppose [ is a smooth function defined on a neighborhood U of my. Then there is a
smooth function f defined everywhere on M and a neighborhood U C U of mg such that
f and f coincide everywhere on U.

(ii) Let O be a derivation at mg. If [ and anre two smooth functions defined everywhere on
M such that the restrictions of f and f to some neighborhood U of m are equal, then

af) = a(f).

Thus, for any tangent vector at m we constructed an explicit derivation at m. It turns out
that this map is a bijection as we show next.
Denote temporarily by Der,, M the set of all derivations at m.

Proposition 2.42. The map
T,,M — Der,,M, (V] = Oy (2.43)
is a bijection.

Proof. We continue to use notations of the proof of Proposition 2.38. In addition, the chart
(U, ¢) is assumed to be centered at m.

Step 1. (2.43) is injective.

Assume Oy,] = O}y, thatis J},,1(f) = 0},,)(f) holds for any f € C°°(M). This implies in
turn that

Dy, F(p(m)) = Dy, F(¢(m))

holds for any F' € C*(R"), where v; = BJ(O) Substituting /' = x; in the above equality, we
obtain that the jth components of vy and v, are equal for any j, i.e., vi = vy, which yields in
turn that v; and -, are equivalent. Hence, the injectivity of (2.43) follows.
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Step 2. For any F' € O (RF) there exist smooth functions G, . . ., Gy, such that

k
F(x) = F(0) + Z z;Gj(x). (2.44)

This follows by the following computation:

Flz) — F(0) = /0 %F(m) dt — /O (VF(tz), z) dt,

which yields (2.44) with G;(z) = [, 2 (tx) dt.

Step 3. (2.43) is surjective.

Denote the jth component of ¢ by z; so that ¢ = (z1,...,2;). Notice that each z; is a
smooth function defined on U. R

By Proposition 2.41, we can find U C U and a smooth function Z; defined everywhere on

U such that z; and Z; coincide on U.
Pick any 0 € Der,,, M and define

Vj = 8(:75]) € R, VvV = (Vl, Ce ,Vk>,

Notice that by Proposition 2.41, (i), v; does not depend on the choice of Z;.
Furthermore, define

B:(—¢,e) = RF, p(t) = (Vlt,...,th),
Vi (—e,€) > M, vi=p lef.

By the previous step, there exist some functions G;: R¥ — R such that f o o~ '(z) =
> 2;G;(x). Hence,

k
f=f(m)+ Z:Ujgj, (2.45)
j=1

where we think of x; as a function on U and g; = G; o ¢. In particular, z;(m) = 0 for all
j=1... k.

Applying Proposition 2.41, (i) again, we can find some §; defined globally on A and a
neighbourhood” U C U such that

k

k
flo = Fm)+> &5, = fm)+> 295,
j=1 j=1
By Proposition 2.41, (ii) we obtain
k
O(f) = 0(f(m)) + > _ 0(w;)g;(m) + ;(m)d(g;)
j=1

N N (2.46)
=0+ vigi(m)+0="> " vjg;(m).
P =1

2Shrinking the neighbourhoods if necessary, without loss of generality we can assume that U is the same
neighbourhood for all £; and g;.
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Furthermore, recalling (2.39), we obtain

k

P k
Oy (f ZV] (%:J = ;Vj 8_1;] 0 <f(m) + ;%Gz(l’))

= Zvj (0 - Z 5@0@'(0)) = ivj gi(m

Comparing this with (2.46), we conclude that O(f) = 0},)(f) holds for any f € C*®(M).
Hence, 0 = 0|,], which finishes the proof of this step and the proof of this proposition too. []

We use the bijective map of Proposition 2.42 to identify 7,, M with Der,, M. Since Der,, M
is clearly a vector space, we obtain the structure of a vector space on 7,,, M in this way. Also, in
view of this identification, we drop the notation Der,, M in favour of 7,, M and we will switch
freely between the two interpretations of tangent vectors as classes of curves and derivations.

Proposition 2.47. For any m € M the tangent space T,,M is a vector space of dimension
k = dim M.

Proof. Pick a chart (U, ), ¢ = (x1,..., ) centered at m as in the proof of Proposition 2.38.
Foreach j = 1,..., k define a curve v; by

pov;(t)=(0,...,0,¢,0,...,0),
where the only non-trivial component is on the jth place. Correspondingly, we have £ derivations:
0; := Op,)-
Notice that if F' is the coordinate representation of f, we have

d d oF
0; = — o (t) = F(,...,0,¢t,0,...,0) = —(0).
(=2 Fen (0., 0.4,0,...0) = 70
We want to show that 0y, ..., 0y is a basis of T,,, M.

To show that 0y,...,0J; are linearly independent, assume there are some real numbers
A1, ..., Ag suchthat A\ Oy + - - + A\, O, = 0, that is

MO(f)+ -+ X0O(f)=0
holds for any f € C°°(M). Substituting f = z; in the above equality’, we obtain \; = 0.
Hence, 0y, . .., Oy are linearly independent indeed.
Let us show that any derivation O at m can be represented as a linear combination of

O1, ..., 0. By Proposition 2.42, there exists a curve y through m such that 0 = Jj,;. If 8 = @07y
is a coordinate representation of v and v = /3(0), then

oF
O(f) =Dy F =Y v, 9. 0) = > vioi(f)
J
Hence, 0 = v, 0y + - - - + Vi, Ok. O
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Notice that the proof of the above proposition yields in fact a basis of 7}, M for any choice
of a chart (U, ) such that m € U. In fact, we have shown that 0y, . .., 0y is a basis of T}, M,
where 9

3jf=a—xj

o (o0 @), (2.48)

Also, in the particular case M = R the proof of Proposition 2.42 shows that we have a
canonical isomorphism

T,,R* — R¥, 0 (0(z1),...,0(x)). (2.49)

Indeed, denote v; = d(x;) and v = (vq,..., V). Assuming m is the origin and writing F'(z) =
F(0) + > x;G;(x) as in (2.44), we obtain

A(F) = )+ Z ( ) + (0 ) Z v 2 a% — D,F(0)

]_

Hence, if v = 0, then O(F) = 0 for all F € C*(R*). In other words, (2.49) is injective. This
map is also surjective, since the image of 0 = D, equals v.

This isomorphism is particularly clear, if we interpret tangent vectors as classes of curves.
Indeed, if 0 = 0y}, then J;,)(x;) = 7;(0) so that (2.49) becomes

[v] = 5(0). (2.50)

Example 2.51. Let f: R¥*! — R be a smooth function. Assume that 0 is a regular value of f.
We shall show below that

M = £71(0)
is a smooth k-manifold. Taking this as granted for now, we can ask the following question:

Given m € M, can we describe the tangent space 7;,, M/ more explicitly?
Notice that we have a natural linear map

v: TyM — Der, RFFP = R 4(9)h = 9(h,,). (2.52)
If a tangent vector is interpreted as a class of curves, then we have

Z(am) = (8[7] (331), . ,8[7] (~Tk+1)) = 7(0) or Z([’y]) = 7(0) (2.53)

This map is injective but not surjective. Indeed, viewing 7 as a curve in R¥*!, this satisfies
f(~(t)) = 0 for all ¢. By differentiating this equation with respect to ¢, we obtain

(Vf(m),4(0)) = 0.
Hence, #(0) lies in the orthogonal complement to V f(m). Since dim7,,M = dim M =k =
dim (V f(m )) , we obtain
1
(T, M) = (Vf(m))™.
Typically, this is expressed simply as 1,,M = (V f (m))L.
An interested reader may find the following exercise to be instructive: Show that the image
of (2.52) equals (V f (m))L directly, that is without using Proposition 2.42.

3Technically, we should first fix an “extension” #; of z; as a in the proof of Proposition 2.42 above. However,
this should be clear by now and we will omit this sort of argument below.
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2.5 Cut off and bump functions

Recall that the function

0, ift <0,
1

AR =R, A(t) ::{ _
e 1, ift >0

is smooth everywhere on R including ¢ = 0.
Furthermore, notice that for any > 0 we have A(¢) + \(r — ¢) > 0 for any ¢ € R. Indeed,
for positive ¢ the first term is positive and for negative ¢ the second one is positive. Using this

we define the function
A(r—1t)

Ar t) = s

0= A =

where r > 0 is a parameter. Notice that y, is smooth everywhere on R, takes values in [0, 1],
Xr(t) = 0fort > r,and x,(t) = 1 for all £ < 0. It is convenient to define

Ar+1-—1t)
At—=1)+AXr+1-1)

which is called a cut off function. The graph of , is shown schematically on Figure 2.1 below.

X () =X (t—1) = (2.54)

A Xr

Figure 2.1: Graph of ;..

Proposition 2.55. For any point my on M and any neighbourhood U > my there exists a
neighbourhood V- C U and a smooth function p: M — [0, 1] such that

pl, =1 and = 0.

p’M\U

Proof. Pick a chart centered at my. Without loss of generality, we can assume that the local
homeomorphism ¢ is defined everywhere on U. We can find R > 0 such that the ball Byg(0) :=
{x € R* | |x| < 2R} is contained in ¢(U).

Furthermore, the function
N e
p@%=m(%g

is smooth, equals 1 on Br(0) and vanishes outside of Byz(0). Hence,

plo(m)), iftmeU,
p(m) = (o(m) .
0, otherwise,
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is a well-defined smooth function, which equals 1 on go_l(B R(O)) and vanishes outside of
gOil (BQR(O)) O

The function p provided by the above proposition is called a bump function.
With these preliminaries at hand, we are ready to prove Proposition 2.41.

Proof of Proposition 2.41. Let V and p be as in Proposition 2.55. The function
{f(m) -p(m) ifmelU

0 otherwise,

has the required properties. This proves (i).

Let us prove (ii). We can assume that V' C U and, moreover, that p vanishes outside of U.
Then the function (f — f) - p vanishes everywhere and therefore for any derivation 0 at mgy we
have

0=0((f = £)-p) =0(f = f) - p(mo) + (f(mo) = f(m0))d(p) = D(f) = (f).
This proves (ii). U
Exercise 2.56. Show that the open ball
B:={zeR||z| <1}

in R¥ is diffeomorphic to R*. Deduce from this that any point on a manifold admits a chart
(U, ¢) such that p: U — R¥ is a diffeomorphism. (Hint: Show first that there is a diffeomorphism
f:(0,1) — (0,00) such that f(r) =rforall r < ry < 1.)

2.6 The differential of a smooth map

Let f: M* — N’ be a smooth map between two smooth manifolds.

Definition 2.57. For any m € M the map
folm): T, M — Ty N defined by fp) = [f*l

is called the differential of f at the point m. Here y is a smooth curve through m.

Think of a tangent vector at m € M as a derivation 0 at m. By Proposition 2.42, there exists
a smooth curve +y through m such that 0 = Jj,. Then we have 9y, ()] = 9j7.~]- Hence, for any
h € C*(N) we obtain

Ot.mn) (h) = g (h) = % (he(fem)®) = %LZO (o f)ex) () = Oy (R f)-

Hence, thinking of tangent vectors at m as derivations at m we can identify the differential of f
at m with the map

t=0

O f.0,  where (f.0)h=0(hef). (2.58)
More precisely, this means that the following diagram commutes:

.M N

l l

Der,,M M) Der ) N.

Draft 20 January 17, 2022



Differential Geometry I

Here the vertical arrows are given by (2.43), the upper horizontal arrow represents the differential
of f in the sense of Definition 2.57, whereas the lower arrow represents (??).
Since (2.58) is obviously a linear map, we obtain the following.

Proposition 2.59. The differential is a linear map. 0

Pick a chart (U, ¢) on M centered at m and a chart (V%) on N centered at f(m) € V.
Write ¢ = (z1,...,2x) and ¢ = (y1, ..., ye¢), Where z; are functions on U and y; are functions
on V just like in the proof of Equation 2.43. By the proof of Proposition 2.47, we obtain the
following bases

0 0 0 0
or. .o :(——> d (6.0 :<——) 2.60
( 1 k) 9z, D2 an ( 1 z) o ) (2.60)
It is worthwhile to recall that 07 g = (0) where G = g o ¢! is the coordinate representation

of g.

Since the differential is a linear map, this can be represented by a matrix relative to the above
bases. Thus, a natural question arises: Can we compute the matrix of the differential relative to
Bases (2.60)?

To answer this question, recall that the coordinate representation of f is

F=1ofop:RF 5 R (2.61)

Pick any smooth function / on N and consider its coordinate representation H := hot)~1. Then
the coordinate representation of the function g := ho f is

G=gop ' =hofop l =hoylopofop™t =HoF.

In other words,
G(z) = H(Fl(x), . ,Fg($)),

where F' = (Fl, e Fg). Hence, we compute:
OH OF; OF;
0fg = —d 8yh
i9= 8@ Z ayj 0@ ax

where all partial derivatives are computed at the origin, however we suppressed this in the
notations to keep those simple. In other words

J ay T _ 9y,
Zaxza —  f(m)d" =0’ DF

where in the last equation 0* = (97, ..., 0f) is interpreted as a k-tuple of vectors in 7,,, M and,
similarly, 0¥ = (07, - - - 0} ); Moreover,

oF, oF;
6%1 e 8mk
DF =
or, or
o1 to oxy,

is the Jacobi matrix of /' (evaluated at the origin). Thus, our computation shows that the
following result holds.
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Proposition 2.62. Let f: M* — N’ be a smooth map between two smooth manifolds. Pick
charts (U, = (x1,...,2x)) and (V,¥ = (y1,...,ys)) centered at m and f(m) respectively.
Denote by F the coordinate representation of f, i.e., ' = 1o fop~'. Then the matrix of f.(m)
with respect to Bases (2.60) is given by the Jacobi matrix of F. 0

We finish this section by the following result.

Proposition 2.63. For any two smooth maps f: M — N and g: N — K between smooth
manifolds, we have

(9o f)u(m) = g.(f(m)) o fu(m).

Proof. The proof follows directly from the definition of the differential. Indeed, for any smooth
curve ~y through m, we have

(g N =1gef)er]=lge(fen] = g.(f(m)) [f o] = g.(f(m)) (f.(m)[4]).

This immediately implies the statement of this proposition. U

Exercise 2.64. Let A: R* — R* be a linear map. Show that the differential of A at any point
can be identified with A itself. More precisely, this means that the diagram

RF —2, RE

commutes for any # € R*, where ¥ denotes the canonical isomorphism T, R¥ — R* given
by (2.49), or, equivalently, by (2.50).
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Submanifolds and partitions of unity

3.1 Submanifolds

Represent R**+* as a product:
RFHE = R* x R

Corresponding to this representation, we have the following maps:

1: RE =S R a(y) = (0,y),
Ty RFYE S RE mo(2,y) =,

where € R¥ and y € R’.
Let f: R¥* — R’ be a smooth map, which is defined on some neighbourhood U of the
origin. For any point py = (29, yo) € U we have the linear map

D, f(po): RE 25 RE+E 2l e, 3.1)

For example, if K = ¢ = 1, we have D, f(po) = %(po). For this reason, we call (3.1) the partial
derivative of f with respect to y (at the point pg).

To simplify the notations it is convenient to assume that pg is the origin and f(0) = 0,
although this is immaterial.

Theorem 3.2. If D, f(0) is an isomorphism, then there exists a smooth map 6: RF* — RFE
which is a local diffeomorpism at 0, such that 6(0) = 0 and

f o 0 = 7'{'2
holds in a neighbourhood of the origin.

Proof. Define
g: RS R by g(a,y) = (z, f(z,y)). (3.3)

Then for the differential of g we have

Do) = (D?(kb) Dy?"(m) = (Z> N (Dxf (O)u+ D, f (0)”) |

where u € R* and v € RY.
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If (uv) € ker Dg(0), then v = 0 and D, f(0)v = 0. However, D, f is an isomorphism
by assumption of this theorem, so that v = 0. Therefore, Dg(0) is injective and, hence, an
isomorphism.

By Theorem 2.24, there is a local inverse 6 : R¥* — R**+ to g, that is in a neighbourhood
of the origin we have

g o0 = idgre — Ty = Ty o idprte = Mpogoll = fof.
Thus, the theorem is proved. O

Corollary 3.4 (The implicit function theorem). Suppose that the assumptions of Theorem 3.2
hold. Then there exists a neighbourhood V; of 0 € R¥, a neighbourhood Vs, of 0 € RY, and a
unique smooth map h: Vy, — V5 such that

flr,y) =0 <<= y=h(z) (3.5)

whenever (x,y) € Vi X Va.
Furthermore, denoting W := f=1(0) NV} x Va, the map

w::m‘W:W%Vl, (x,y) = x
is a homemorphism, that is (W, ) is a chart on f~1(0) N U.

Proof. Let0: U — 0(U) be the local diffeomorphism provided by Theorem 3.2. Pick any open
subsets ] and V5 as in the formulation of the theorem such that V;, x V5, C U. For x € V] define
h(z) := my o 0 (x,0). Furthermore, for (x,y) € V; x Vs, denote

(z,w) == 07" (z,y) = g(z,y) = (z, f(z,y)).
Here we used the fact, that g, which is given by (3.3), is the inverse of #. Then

flry) =0 = 0=febc0 (z,y)=fo0(2,w) =w
— (2,0) = (a:,f(x,y))

Hence, z = z and (z,y) = 6(z,0), which yields in turn y = h(z).
Furthermore, for any = € V; we have

(2,0) =go0(z,0) = g(m 0 (z,0), mo0(z,0))

From the definition of g we obtain z = ;< 6 (z, 0) and, hence, 0 = f(z, h()).
To show the uniqueness, notice that

F h@) =0 = g(z.h(@) = (v, f(z,h(x))) = (2,0)
flz, hz))=0 = 9(z, h(z)) = (x,0).
Since g is a local diffeomorphism, we obtain h(z) = h(z) provided x is sufficiently close to the

origin.
Furthermore, notice that the map

Vi— W, z — (z,h(z))

is a continuous inverse of ¢. Hence, v is a homeomorphism. 0]
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Remark 3.6. The hypothesis of Corollary 3.4 implies that the differential of f at the origin is
surjective. In fact, the surjectivity of the differential is decisive in Theorem 3.2 and Corollary 3.4,
whereas the hypothesis that D, f(0) is an isomorphism can be achieved by a linear change of
coordinates, see the proof of Theorem 3.10 below for some details.

The proofs of Theorem 3.2 and Corollary 3.4 show that there is a chart (U, ) on R** such
that (U N N) C R x {0}. This motivates the following.

Definition 3.7. Let N be a manifold of dimension k + ¢. A subset M C N is said to be a
submanifold of dimension k (or k-subamnifold), if for each point m € M there exists a chart
(U, ) on N centered at m such that

e(UNN) =¢U)N (R* x {0}) (3.8)
holds. Under these circumstances, the chart (U, ¢) is said to be adapted to M.

Notice that if (U, o) is an adapted chart, then (M N U, ) is a chart on M, where
(N zﬂlogolUmM: UNM — R
Proposition 3.9. A k-submanifold is a smooth k-manifold.

Proof. By its very definition, a k-submanifold is equipped with a C?-atlas I/, consisting of
restrictions of all adapted charts.

I claim that this atlas is in fact smooth. Indeed, let (U, ¢1) and (Us, 2) be two charts
adapted to M. Denoting by 7, : R*¥ — R+ the inclusion 1, (x) = (x,0), we have

Yoty (z) = i (7 (2,0)) = moprowy o () =mobizon ().
Thus, ¢/ is smooth. OJ
We are now in the position to state one of the central theorems of this chapter.

Theorem 3.10. Let M and N be smooth manifolds. If n is a regular value of a smooth map
f: M — N and dim M > dim N, then f~'(n) is a submanifold of M of dimension k :=
dim M — dim N.

Proof. Denote
¢ =dim N — dimM =k + /.

Pick any m € f~'(n) and any charts (U, ) and (V1)) centered at m and n respectively.
Let F' = 1o f o ¢~! be the coordinate representation of f with respect to the charts (U, ) and
(V,4). Since ¢ and ® are diffeomophisms, we obtain that the differential F, of I is surjective
at the origin (in fact, at any point from F~1(0)). In particular, dim ker F,(0) = k.

Choose a basis (v1, ..., Vi) of R¥ such that (vy, ..., v}) is a basis of ker F,(0). Set

k+¢
A: RFFE 5 RMHE Z szvj.
=1

Notice that by the definition of A and elementary facts from linear algebra, the following holds:

* Ais an isomorphism;

e Aoy : R¥ — ker F,(0) is an isomorphism;
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o F,(0)o Aory: R® — R’ is an isomorphism.
Furthermore, consider the map G := F o A: RFE 5 R By Exercise 2.64, we have
G.(0)=F.(0)oA =  D,G=F,(0)cAouw.

Since the letter map is an isomorphism, by the proofs of Theorem 3.2 and Corollary 3.4 we
obtain a chart (W, £) on R¥*¢ adapted to G~*(0), that is

EWNGH0)) =EW) N (R* x {0}).

Without loss of generality we can assume that 1V is contained in A~ (¢(U)).
Various charts involved in the proof are shown schematically on Figure 3.1.

2

|

¥

Figure 3.1: Scheme of the proof of Theorem 3.10.
Define a chart (I, £ ) on RFt by
(W.€) = (A1 (W), go A7)
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Since z € G71(0) & Az € F~1(0), we obtain
EWNFH0) = (W NGH0)) = W) N (RF x {0}).
Finally, setting

Py = éo %) and U = Spfl (é(W)) = (W)

we obtain
o1 (Ui N 1 n)) = EW N FH0)) = W) N (RF x {0}) = o1 (U1) N (RF x {0}).
Thus, (Uy, ¢1) is a chart adapted to f~1(n) at m. O

Notice the following: If dim M < dim N, then n is a regular value of smooth map f: M —
N if and only if n ¢ Im f, see the paragraph following Definition 2.28. In this case f~'(n) = @
is also (by definition) a smooth manifold. Thus, the condition dim M > dim /N can be dropped
in the formulation of Theorem 3.10.

Proposition 3.11. In the setting of Theorem 3.10, for any m € f~1(n) we have
Tnf H(n) = ker f.(m).
Proof. Pick any curve «y in f~!(n) through m. Since - lies in the level set of f, we have
foy(t)=n forallt € (—¢,¢). (3.12)

Since the constant curve t — n represents the zero vector in 7, N, by the definition of the
differential of f and (3.12) we obtain f.(m)([y]) = 0. In other words any vector [y] tangent to
f~(n) lies in the kernel of f,(m). O

Example 3.13.

(i) Consider the map f: R""™ — R, f(z) = |z|?>. Then 1 is a regular value of f. In
particular, S™ = f~1(1) is a manifold of dimension n. Of course, the reader knows this
fact by now very well.

(ii) Let M, (R) be the space of all n x n matrices with real entries. One can show that 1 is a
regular value of the function det: M, (R) — R, A — det A. Consequently,

SL,(R) := {A € My(R) | det A =1}

is a manifold of dimension dim M,,(R) — 1 = n? — 1.

Let us compute the tangent space to SL,,(R) at the point 1. To this end, it is convenient
to identify M, (R) with R"*. Recalling that

det A = Z sign0a1g(1) <+ Uno(n),

where o runs through all permutations of the set {1,...,n}, for any B € M,(R) we
obtain

det (L4tB) = (1+tbi)(1+tb)...(1+tb,)

+ Z sign o (51 o(1) T tby 0(1)) (520(2) + tbza(g)) o ((5ng(n) + tbng(n)).
o#id
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(iii)

Notice that for any o # id, o (i) # i at least for two values of i. Hence, the last term in
the above expression is o(t). This yields

det (1 +¢B) = (14t tr B+o(t)) + o(?).
Consequently, det, (1) B = tr B and therefore

T3SL,(R) = {B € M,(R) | tr B =0}.

Let Sym"(R) C M, (R) denote the subspace of all symmetric matrices. One can show
that the identity matrix 1 € Sym™(R) is a regular value of the map

f: M,(R) — Sym™(R), flA)=A- At (3.14)
Consequently,
O(n) = {A e M,(R)| A- At = Il}
is a manifold and

2_n(n—1—1)

dim O(n) = dim M,(R) — dim Sym™(R) = n 5

_ n(n —1)
—

Notice that if we would consider (3.14) as a map M,,(R) — M, (R), then 1 would not be
a regular value.

Just like in the case of SL,(R), let us compute the tangent space to O(n) at the point 1.
We have

f(l+sB)=(L+sB)-(L+sB)'=1+s(B+ B")+o(s).
Hence, f.(1)B = B + B" and

T:0(n) = {B € M,(R) | B'= -B}.

We finish this section by Sard’s theorem, which, loosely speaking, says that for any smooth
map almost any point is a regular value. More precisely, we say that a subset A of a smooth
k-manifold M is of measure zero, if for any chart (U, ) on M the set ¢(ANU) C R* is of
measure zero.

Theorem 3.15 (Sard). Let f: M — N be a smooth map between smooth manifolds. Then
almost any point n € N is a regular value of f, that is the set of critical values for f is of

measure zero. 0
A proof of Sard’s theorem can be found for example in [BT03, 9.4] or [Mil65, §3].
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3.2 Immersions and embeddings

Just like maps with surjective differentials can be conveniently described as projections after
applying a diffeomorphisms, the maps with injective differentials admit an analogous description.

Theorem 3.16. Let U be an open subset of R* containing the origin and f: U — RF x R be
a smooth map such that f(0) = 0 and

f1:(0): RF = R¥, where fi1 =m0 f,

is an isomorphism. Then there exists a neighbourhood V. C R¥** of the origin and a diffeomor-

phism 0:V — 6(V) C R such that 0 o f =1 and 6(V N f(U)) = 6(V) N (R* x {0}).

Proof. The proof of this theorem is similar to the proof of Theorem 3.2.
Thus, consider the map

F: U x R* = RF* = RF x R, F(z,y) == f(z) + (0, y) = (fi(z), folz) +y).

«(0) 0
F.(0) = f1:(0) |
f 2% (0) idpe
is an isomorphism. Hence, there exists a neighbourhood V' of the origin and a diffeomorphism
0:V — 0(V) such that

The differential of this map

Qo F = ldg(v)

In particular, for any (z,0) € (V') the above equality yields:
OoF (2,0) =00 f(z) =1(x) = Oof=n1.

Hence, (V) N (R* x {0}) Cc 6(V N f(U)).

To show the converse inclusion, let (z,y) € 6(V N f(U)). Hence, there exists some (2, w) €
V' N f(U) such that (z,y) = 0(z,w). In this case we must have (z,w) = f(z) for some x € U
and therefore

(l‘7y) - 9(27w) =0o f(:[‘) - (1’,0)
Thus, y = 0 and (z,0) € V, which yields 6(V N f(U)) € (V) N (R* x {0}). O

Definition 3.17. A smooth map f: M* — N*such that f,(m) is injective at each point m € M
is called an immersion. An immersion, which is a diffeomorphism onto a k-submanifold of /V,
is called an embedding.

Clearly, an immersion of f: M — N can exists only if dim M/ < dim N. Notice also, that
by Theorem 3.16 each immersion is locally injective, however an immersion does not need to
be globally injective. Even if an immersion is injective, this may fail to be an embedding. This
is shown schematically on Fugures 3.2 and 3.3 below. In particular, the image of an immersion
does not need to be a submanifold.
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Figure 3.2: The image of a non-injective Figure 3.3: The image of an injective
immersion R — R2. immersion R — R2?, which is not an
embedding.

Proposition 3.18. An immersion which is a homeomorphism onto its image is an embedding.
Proof. Denote k := dim M and ¢ := dim N. The proof consists of the following 3 steps.

Step 1. For any m € M there exists a chart (V,1) on N centered at n := f(m) with the
following properties:

. wl*(n)hmf (my® 1M f«(m) — RF is an isomorphism, where 1, = m, o and 7, : R* =
RF @ R~*F — RF is the projection.
* There exists a neighbourhood U of m such that f(U) =V N f(M).

Since f is a homeomorphism onto its image, f: M — f(M) is an open map. In particular,
for any open U C M there exists an open subset V' C N such that f(U) = V N f(M). If U is
a neighbourhood of m, we can choose a chart (V, £) centered at n such that V' C V.

Furthermore, since &,.: T,N — R’ is an isomorphism and Im f,(m) is a k-dimensional
subspace of T, N, we can find a linear isomorphism A: R® — R’ such that

A& (m £.(n)) ) = R* x {0},

Then (V,v) = (V, Ao §) is the required chart. Also, setting U := (V') we obtain f(U) =
VN f(M).
Step 2. f(M) is a submanifold of N.

Pick any m € M and a chart (U, ¢) centered at m. Pick also a chart (V, ¢) as in the previous
step. Denote also W := (V) C R".

Let F' = 1) fo~! be the coordinate representation of f. Denoting F := m o F': R¥ — R¥,
we have

F1.(0) = m1:(0) o F1(0) = m14(0) e thi(n) o fx(m) 0 9, (0) = ¥1.(0) o fu(m) o 0. 1(0)

Since ¢, 1(0) is an isomorphism, by Step 1 we obtain that Fi,(0) is injective. Hence, F,(0) is
an isomorphism. Hence, by Theorem 3.16 we can find a diffeomorphism' #: W — (W) C R*
such that

Qo F =1 — (GOw)ofogp_lzzl

"Without loss of generality we may assume that V' was chosen so that 6 is defined everywhere on W.
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Denote ¢ := 6§ o ). Then (W, 1)) is a chart on N adapted to f(M).
Step 3. f is a diffeomorphism between M and f(M).

Let (U, ) and (W, @Z) be as in the preceding step. By the construction of 1/3, the coordinate
representation of f is 7,@ o fopt =1;: RF — R’ Since the restriction of 7y 04y to f(M)NW is
a chart on f(M), the coordinate representation of f viewed as amap f: M — f(M) is given
by

Wloz/;ofogo_l =m0 = id.

Hence, f is alocal diffeomorphism. Since f: M — f(M) is bijective, this is a diffeomorphism.
O

Corollary 3.19. If M is compact, then any injective immersion f: M — N is an embedding.

Proof. Pick a closed subset A C M. Since A is closed in M, A is compact and therefore f(A)
is compact in N. Since N is Hausdorff, f(A) is closed. Hence, f is a closed map, i.e., the
image of any closed subset is closed. This means that f~*: f(M) — M is continuous, that is,
f: M — f(M) is ahomeomorphism. The statement of this corollary now follows immediately
from Proposition 3.18. U

Theorem 3.10 combined with Sard’s theorem allows us to construct many smooth manifolds,
which are in fact submanifolds of Euclidean spaces. It turns out that any smooth manifold can
be realized as a submanifold of an Euclidean space.

Theorem 3.20 (Whitney’s embedding theorem). For any smooth manifold M there is an em-
bedding of M into R"™ for some n € N.

Proof. We prove Whitney’s embedding theorem only in the case when M is compact.
For any m € M choose a chart (U,,, ¢.,). Pick also open neigbourhoods W,, C V,, and a
bump function p,, such that the following holds:

e V,, CU,;

* pm|_ = 1land p,, < 1 outside of W,,;
W

m

* pn, vanishes outside of V,,,.

Since M is compact, there is a finite subset {m,...,m, } of M such that {WZ} cover all
of M, where W; := W,,.. Consider each ¢; := p; - ¢; := pp, - ¢m, as a smooth map M — R*
(extended by zero outside of V/,,,), where k = dim M. Finally, define

f:M— RPFHP, f(m) = (wl(m), e p(m), pr(m), ... ,pp(m)).

Clearly, f is smooth. I claim that this map is also injective. Indeed, pick any two distinct
points m and 7. Without loss of generality, we can assume m € W;. If i € W, then
vi(m) = @i(m) # e1(m) = i(m). If m ¢ Wi, then 1 = pi(m) # pi(m), so that f is
injective indeed.

Furthermore, assuming m € W again, ¢y.(m): T,, M — R* is an isomorphism. Hence,
fo(m): T, M — R**P ig injective at any m € M. By Corollary 3.19, f is an embedding. [
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Whitney’s embedding theorem shows that any (abstract) manifold M can be thought of as
a submanifold of an Euclidean space. In other words, we could have defined manifolds as the
subspaces of Euclidean spaces admitting charts” at each point. Some authors do take this point
of view arguing that this yields the same pool of examples. While it is true of course that this
would yield the same pool of examples, manifolds often do not arise as subsets of Euclidean
spaces. For example, the real projective space is not obviously contained in any Euclidean space
(and it is even not so obvious how to construct an embedding). Even if one decides to work with
the submanifolds only, one finds out pretty soon that certain useful constructions, for example
taking quotients by group actions, are incompatible with this setting. More importantly, it is
useful to distinguish “inner” properties of manifolds from those of an embedding. All these
reasons led to the necessity to separate abstract manifolds from their particular realizations as
submanifolds.

3.3 Partitions of unity

Let f: M — R be a (continuous) map.
Definition 3.21. The set

supp f := {m € M | f(m) # 0}
is called the support of f. In other words, supp f is the closure of the set, where f does not
vanish.

Example 3.22.
(i) For f: R - R, f(z) = x we have supp f = R.
(ii) For the cut off function (2.54) we have supp x, = (—o0, 1 +r].
(iii) For the bump function p: R¥ — R, p(x) = x1(|z|) we have
suppp = {z € R | 2| <2 }.
Definition 3.23. A family of functions {p,: M — Rxo | & € A}, where A is an index set, is
called a partition of unity, if the following holds:

(i) The family {suppp, | @ € A} is locally finite, that is for each m € M there exists a
neighbourhood W > m such that the set {a € A | W N supp p, # @ } is finite;

(i1) For each m € M we have

> palm) = 1. (3.24)

acA

Furthermore, a partition of unity {p,, } is said to be subordinate to a covering {Us | § € B}, if
for each o € A there exists some 5 = () such that supp po C Ug(a).

Notice that (i) implies that for each m € M the set {« | po(m) # 0} is finite so that (3.24)
is a finite sum.

Any manifold trivially admits a partition of unity consisting of a single constant function.
To obtain a non-trivial example, consider M/ = R and the family {ﬁj | j € Z}, where

pirR—=R,  pi(e) = xi(lz - jl). (3.25)

*More precisely, admitting adapted charts.
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In particular, p; equals 1 everywhere on the interval [j — 1, j + 1] and supp p; = [j — 2, j + 2].

Hence, the function
pa) =3 pile)
JEL
is well-defined and positive everywhere on R. Therefore, {p; := p;/p | j € Z} is a partition
of unity on R. This partition of unity is subordinate for example to the following coverings:

{(j—-37+3) | jez} and  {(—j,j) | jeN}.

Theorem 3.26 (Existence of Partition of Unity). Given an open covering U on a manifold, there
is a partition of unity subordinate to U.

Proof. We prove this theorem only under a simplifying hypothesis that the manifold M under
consideration is compact.

Thus, pick any point m € M and a set Ug(,,) € U containing m. By Proposition 2.55,
there exist a neighbourhood V;,, C Ug(,,) and a bump function p,, such that p,, = 1 on V}, and
supp pm C Ugim)-

Since M is compact, we can choose a finite subset {m;, ..., m, } such that {V;,...,V, } is
a covering of M, where V; := V},,.. Redenoting p; := p,,,, we obtain that

pm) = jy(m)

is positive everywhere on M. Hence, {p; := p;j/p | j = 1,p} is a partition of unity on M.
Moreover, this is subordinate to ¢/, since supp p; = supp p; C Upg(m,).- O

A couple of remarks are in place here. First, a proof of the above theorem in full generality
can be found for example in [War83, 1.11] and uses the axiom of second countability, which
we have not really used so far. This is one of the main reasons that the manifolds are required
to be second countable.

Second, it is straightforward to generalize the definition of a smooth manifold to the complex
holomorphic setting. Namely, we could have defined a complex manifold as a (Hausdorf
second countable) topological space equipped with an atlas U := {(U,, ¢a) | @ € A}, where
Yo' Uy — 9o(U) C CF is a homeomorphism, such that all transition maps

Oup = @aogogl: Ck — C*

are holomorphic. Most of the results we have seen so far are still valid in this setting (with
an obvious replacement of the adjective “smooth” by “holomorphic”), except, most notably,
Theorem 3.26 ( and related Theorem 3.20 and Proposition 2.55). The existence of the partition
of unity on smooth manifolds and its non-existence on complex manifolds gives these two
theories somewhat different flavours.

A typical application of the partition of unity is to existence questions, which we illustrate
on the following result.

Theorem 3.27. Let M* C N’ be an embedded submanifold. Then for any h € C*°(N) the
restriction of h to M is a smooth function on M. Conversely, any smooth function f on M
admits a smooth extension to N, that is there exists some h € C*°(N) such that h! v=1
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Proof. First notice that h‘ o = hotn, where vy 0 M — N is the embedding. The smoothness
of the restriction then follows from the smoothness of 2.

Thus, given f € C°°(M) we wish to find some h € C>*(M) such that h!M = f.LetU be a
covering of M by adapted charts. For the covering Uy := U U {N \ M} of N pick a partition
of unity {p, } on N adapted to Uy

For each « define f, € C*(M) by

fa(m) = pa<m> ’ f<m> = [= Zfou

where at each point m € M only finitely many f, are not vanishing.

I claim that each f, admits an extension h,. First recall that if (U, ¢) is an adapted chart,
then (U N M, 1) is a chart on M, where ¢ = m o 90|M. Denoting by F' = f o9~ the the
coordinate representation of f, define

Ho(w,y) = F(z) - (pao @) (w,y)  and  ha(n) = {Haw(n) ifnel,

0 otherwise.

Notice that H, is a smooth function on R, which vanishes outside of ¢ (U) so that h,, is well-
defined and smooth. Moreover, the family {supp h,, | & € A} is locally finite, since

(ha(n) #0 = pa(n) #0) = supp Ao C SUPP pa.

Therefore, we can define h(n) := > ho(n), which is smooth, because in a neighbourhood
of each point £ is a finite sum of smooth functions. For m € M, we have

h(m) =Y ha(m) =) fa(m) = f(m).

Hence, h is a smooth extension of f. 0
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Chapter 4

The tangent bundle and the group of
diffeomorphisms

4.1 Some elements of linear algebra

In what follows it may be useful to recall the following elements of linear algebra. Let V' be

a linear vector space of dimension k. Any basis v = (vy,...,Vv,) of V gives rise to the linear
isomorphism
k
RESV, oy ) yv=vey (4.1)
j=1

The very last term is a shortcut for the sum of the products on the left hand side and should
be understood as a matrix multiplication, where the first “matrix” v consists of 1 row and k
columns (and its entries are vectors from V'), whereas y is a matrix with k£ rows and 1 column,
1.e., ¥ 1s just a column-vector.

Conversely, given a linear isomorphism R* — 1/ we can construct a basis of V just by
taking the image of the standard basis of R*. This yields a bijective correspondence between
the set of all bases of V' and the set of all isomorphisms R* — V.

Furthermore, let w = (wy, ..., wy) be another basis of V. Then w and v are related by the
so called change-of-basis matrix B, which is obtained as follows. Decompose w; in terms of
the basis v, that is write

k
W, = Z bz’jVj-
j=1

Then B = (bij) is the change-of-basis matrix between w and v. In terms of the matrix
multiplication used above, the relation between v, w, and B can be elegantly expressed as
follows:

w=v-B.

Just to familiarize ourselves better with these notations, let : V' — V' be a linear map. The
reader knows that given a basis of V/, say v, ¢ can be represented by a k£ x k-matrix A. This
means, that if (y,...,yx) are coordinates of a vector v € V/, then the coordinates of p(v) are
given by A - y (in this formula y is interpreted as a column-vector). An elementary computation
yields that the jth column of A consists of coordinates of ((v;) with respect to v. In other
words, A can be characterized by the equality ¢(v) = v - A. If w = v - B is another basis of V'
as above, then we have

p(w)=p(v-B)=¢(v)-B=v-AB=w-B'AB.
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This yields that the matrix of ¢ with respect to the basis w is B~'A B. The reader surely
knows this fact from the linear algebra, however the typical proof of this boils down to a tedious
computation.

4.2 The tangent bundle

Consider the set
TM = | | T..M,
meM

which comes equipped with a map
m: TM — M, n(v)=m & veTl,M.
For example, in the case M = R* we can identify 7},,R¥ with R* just as in (2.49) so that
TR = | | T,R*=R¥xR* and 7=m.
meRrk

Furthermore, let (U, ) be a chart on M. Write ¢ = (1, ..., z;) and recall that a each point
m € M we have constructed the following basis of 7}, M:

9

Q| = (0r,....0k)| where  9;| f = 5
J

(foe@). @2

z=¢(m)
See (2.48) and the proof of Proposition 2.47 for further details. Therefore, we obtain the

bijection

k
UxRF 577l (U) = | | TuM,  (my) =D y;04,.

meU j=1

Combining this with ¢: U — (U), which is also a bijection, we obtain finally a bijective map
k
T =17, 0(U) x RF = 77 1(U), T(z,y) = Zyj Ojlp-1(2)-
j=1

Proposition 4.3. Let U = {(Ua, o) | @ € A} be a smooth atlas on M. There is a unique
second countable and Hausdorff topology on T'M such that

V= {(W—I(Ua), ) ae A}

is a C°-atlas on TM, where 7, := Too- This atlas is in fact smooth so that T'M is a smooth
manifold of dimension 2k. Moreover, 7 is a smooth map with surjective differential at each
point.

Proof. The proof consists of the following steps.

Step 1. Write p, = (s1,...,sk) and g = (x1, ..., xx). At each point m € U, N Uz we obtain
two bases of T,, M, namely 3s‘m and 5’x|m. Then the change-of-basis matrix between these
two bases is the Jacobi-matrix of 0,3, i.e.,

0o =0s| B — B = Df,;. (4.4)

Draft 36 January 17, 2022



Differential Geometry I

Pick any function f and let £, := f o be the coordinate representation of f with respect
to the chart ¢,. Then we have

Fg=fopg' = fop,'eopaops' =Fyolas.

Therefore, using the above equality we obtain

k

OF OFy 00np.: o= 0api
xf=73"=" = o3, 4.5)
=1

al‘j al'l 837]' i1 83:]- !

where we dropped the point where the derivatives are computed from the notations. Since f is
an arbitrary function, we obtain (4.4).

Step 2. For the coordinate transformation © .5 := 7, ' ° 75 on T M we have

Oap(,y) = (Oap(x), bap(x)y). (4.6)

In particular, © .3 is smooth.

Denote 75(x, y) = v. This means

k
gpﬂ(w(v)) =z and v= Zyj 8}” =0, v,
j=1

where the right hand side of this equality is interpreted in the sense of (4.1). Therefore, by (4.4)
we have
V=20, -y=20s Dby -y.

Denoting 7' (v) = (s, ), we have

5= g (W(V)) = Vq (gpgl(as)) = Oap(x) and t=D0s-y.
Step 3. We construct a topology on T'M.

Declare a set V' C T'M to be open in T'M if and only if 7,,* (V') = 7,(V N U,) is open in
R?* for any v € A. We have

(i) @isopenand 7,1 (M) = p,(U,) x R¥ = M is open.
(i) V; and V3 are open = 7, (Vi N Vo) = 7,1 (V4) N7, (Va) is open.
(iii) If Vj are open for each 3 € B, then 7, ' ( Uz V3) = Upt, ' (V) is open.

Hence, this yields a topology on 7'M such that 7 is continuous. Moreover, each (77_1 (Uy), 751 )
is a chart on T'M.

Step 4. The topology of T'M is Hausdorff and second countable.
Indeed, pick any two distinct points vy, vy and consider the following cases:

(@) m(v1) # w(ve) = 7 }(U;) and 7~ (Uy) separate v; and v, provided U; N Uy = .

(b) m(vy) = 7(va) =t m = for any chart (U,, ¢,) containing m the sets 7, (U, x V;) and
7o (Uy X V) are open and separate vy and v, provided V;, V, C R¥ separate (Toj 1 (vl))
and 7y (TJI(VZ)).
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Furthermore, the constructed topology is second countable for the following reason: Let U;
be a countable basis of the topology of M and V; be a countable basis for R¥. Without loss of
generality we can assume that each Uj is contained in some chart U,,. Then the collection of all
sets of the form

Ta; (Spoci(Ui) X V;)
is a countable basis for the topology of T'M.

To finish the proof, pick a chart (7r*1 (U,), 7! ) and consider the coordinate representation
of 7 with respect to this chart on 7'M and the chart (U,, ¢,) on M:

PaoToTa (1,Y) = ¢a(pn' () =2 — P 00Ty = 1.

Thus 7 is smooth and its differential is surjective at each point. 0

To get a better understanding of the tangent bundle let us consider the case of an embedded
submanifold M C R, If 2: M — R’ denotes the embedding, for each m € M the map
1.(m): T,y M — R is injective. Consider the map

j: TM — TR* = R* x R, i(v) = («(m), 1(m)v), wherem :=m(v).
Clearly, j is injective.

Let (U, ¢) be a chart on R adapted to M. Thinking of R x R as the tangent bundle of R,
we obtain a chart (7' (U), 7,) = (U x R, 7,,) on R* x R".

Furthermore, recall that m € U belongs to M if and only if m = ¢~ *(z,0) for some z € R*.
Also, v € T,,R® belongs to T, M if an only if

Vv = Zyj @-\w,l(w) <~ Tgl(v) = ((I,O), (y,O))

(notice that the summation runs to k!). Hence, (U x R, 7, ) is a chart adapted to j(T'M) (up
to a permutation of coordinates). In particular, j(TM) is a 2k-submanifold of R%.

Finally, notice that j is just the differential of :. Here we interpret the differential of ¢ as a
map TM — TR

Exercise 4.7. Recall that the restriction of ¢y := m; o ¢ is a chart on M, where ;: Rf =
R* x R*~* — RF is the projection. Show that the coordinate representation of j with respect to
the charts (7~ '(U N M), 7, ) and (U x RY, 7.') is the map

RF x R* 5 (z,9) = (u(2), u(y)).
Deduce that j is an immersion and, hence, an embedding.
Thus, we can simply identify 7'M with j(7T'M) so that
T™M = {(u,v) €R* |u€ Mandv € T,M}.
Example 4.8. For M = S* C R**!, we have
TS" = {(z,y) € S" x R | (2,y) = 0} C R**2

In particular, for & = 1 we obtain that 7'S! is a 2-submanifold of R*. In fact, we can realize
T'S' as a submanifold of R? in the following sense. Consider the map

f: 9" xR —RY f(xo, x15t) = (20, 21, tay, —tazo).

One can check that f is a diffeomorphism between S' x R C R3 and T'S" so that we can in fact
identify 7'S' with an infinite cylinder.
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4.3 Vector fields and their integral curves
Definition 4.9. A smooth map v: M — T'M such that
Tov =idy — v(m) € T,,M
is called a (smooth) vector field on M.
For example, the map
v: S% — RY, v(z) = (z, (21,20, T3, —T2))

is a (smooth) vector field on S3. Since the first component of v must be x by the very definition
of the vector field, usually one simply writes

v(z) = (ml, —Xxg, X3, —:1:2).

Denote
X(M) :={v: M — TM is a vector field }.

Clearly, X(M) is a real vector space with respect to the following operations:
¢ (v1 4 v2)(m) := vi(m) + va(m), where vy, v, € X(M);
* (Av)(m) = Av(m), where v € X(M) and X € R.
In fact, any vector field can be multiplied by any smooth function:
(f-v)(m) = f(m)v(m), where v € X(M) and f € C*®(M).
We summarize this in the following.

Proposition 4.10. The set X(M) of all vector fields on M has the structure of a module over
O (M) with respect to the pointwise addition and multiplication. 0]

Example 4.11. Consider M = R*. We have seen that TR¥ = R¥ x R* and that the natural
projection equals ;. Hence, a vector field is a map of the form

(@) = (z,y(x)),
where y € C>(R*; R¥). Hence, we can identify X(R¥) with C*°(R¥; R*) via the map
v = (ide, y) — .

More formally, this map is an isomorphism of C'*°(M )-modules.

Generalizing the above example slightly, pick a chart (U, ¢) on a manifold M, where ¢ =
(z1,...,21). Since (4.2) is a basis of T,,,M, we can find the coordinates (y;(m), ..., yx(m))
of v(m) with respect to this basis. In other words, y: U — R* is a map such that

v(m) =0y, - y(m)

holds at any point m € U. Notice that the map y is well defined even if v is not necessarily
smooth. This map is called the coordinate (or local) representation of v with respect to the
chart (U, p).
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Proposition 4.12. The map v: M — T M satisfying 7o v = idys is a smooth vector field if an
only if for each chart (U, @) as above the coordinate representation y of v is smooth.

Proof. Recall that for any chart (U, ) on M as above we constructed a chart (7= *(U), 7,')
on T'M. Just by the definitions of 7, and y, for the coordinate representation of v with respect
to these charts we have

T evept = (z, yo o (7).

Hence, v is smooth if and only if y is smooth. 0

Thus, locally over each chart U vector fields can be identified with smooth vector-valued
maps just as in Example 4.11. It turns out, however, that in general no such identification can
exist.!

Let v: (a,b) — M be a smooth curve. At any point ¢t € (a, b) we define the tangent vector
A(t) € T M to v by

: d :
i) =3 (Fr®) = 0= [s+D).
In the above equation the first definition yields a tangent vector as a derivation, whereas the
second one as a class of curves through a point.
Consider R as a 1-dimensional manifold equipped with an atlas consisting of a single chart
(R, ), where ¢(t) = t. Notice that for each fixed ¢ € R the derivation

d

e C™R) = R, f= 1) (4.13)
is non-trivial, since for each point ¢ there is a function f such that f'(¢) # 0. Hence, % is a
basis of T;R.
Proposition 4.14. We have

7(t) (5) = 7). (4.15)
Proof. By (2.58), forany f € C*°(M) and any ¢ € R we have
/ .
%) () f=(Fer) ) =3@)(f)

Since f is an arbitrary function, we obtain (4.15). 0

Let M be a submanifold in R. Denoting by 2 the embedding, we can think of any curve
in M as a curve in R¢. More precisely, for any curve v: (a,b) — M, T := 10+ is a curve in R’
We have

I(t) = (20 7)* % = 14 © Vx % =5 (3(t)). (4.16)
Here I omitted the points where the differential is computed at in the notations. In other words,

thinking of ¢, as an identification between T, M and 1, (7T;,) C R, the tangent vector to ~ is
just the ordinary tangent vector well known from the analysis course.

Definition 4.17 (Integral curves). A (smooth) curve 7 is called an integral curve of a vector

field v if
(1) =v(v(1))
holds for any ¢ € (a, b).

'If time permits, we will return to this below.
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Example 4.18. Consider the curve v: R — S%, ~(t) = (sint,cost,0,0). We have ¥(t) =
(cos t,—sint, 0, O). Furthermore, if v is given by (4.3), then

vory(t) = (cost,—sint,0,0).

Hence, v is an integral curve of (4.3).

Let us consider integral curves on R* in some detail. Thus, represent a vector field v €
X(R*) by a smooth map y: R¥ — R just as in Example 4.11 above. A map v: (a,b) — R” is
an integral curve of v if and only if

A =y(v(1) = (4.19)
Ye(t) =y ((t), - (1)),

holds for any ¢ € (a,b). In other words, an integral curve of a vector field is a solution of a
system of ordinary differential equations (ODEs). Notice that the map y does not depend on ¢,
that is (4.19) is an autonomous system of ODEs.

Conversely, any system of ODEs as above, is uniquely specified by a map y € C>(R*; R¥).
In view of Example 4.11, y corresponds to a vector field v, whose integral curves are solutions
of the initial system of ODEs. Thus, at least for Euclidean spaces, integral curves of vector
fields and solutions of autonomous systems of ODEs are synonymous.

Exercise 4.20. Show that if y is a C''-curve satisfying (4.19), then v is smooth.

Notice that for autonomous systems we have the following property: If ~ is a solution
of (4.19) such that (ty) = my, then for any ¢ € (a, b)

Yelt) ==t +¢c), te(a—cb—c)
is also a solution. In other words, the integral curve -, of v such that v, (¢;) = my satisfies
1(t) = ’Y(t +tp — t1)>

that is ~y; differs from + just by a shift of time. For this reason, one often chooses ¢y = 0 as the
initial time for integral curves of vector fields.

By the main theorem of ODEs [Hal80, Sec.l.3], we obtain the following existence and
uniqueness result.

Theorem 4.21. Let v be a smooth vector field on an open subset Q) C R¥. For any point mgy € Q
there exists a neighbourhood V- C () of my and a number ¢ > 0 with the following property:
For any m €V there exists an integral curve

Y= Ym: (—g,8) = Q such that ~ ~v(0) = m.

This integral curve is unique in the following sense: If f: (—0,0) — M is any other integral
curve such that 3(0) = m, then 8 and ~y,, coincide on (—e,€) N (=6, 0). Moreover, the map

®: (—g,e) x V = R¥, O(t,m) := V(1) (4.22)
is smooth. [
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Definition 4.23. An integral curve v: (a,b) — M of a vector field v is called maximal, if the
following property holds: For any other integral curve 3: (¢,d) — M of v such that for some
to € (a,b) N (¢, d) we have y(ty) = 5(to), then:

(@ (¢,d) C (a,b);

It is a well-known fact from the theory of ODEs, that for any mg € R there is a unique
maximal solution of (4.19) through my. A straightforward corollary is, that for any vector field
v on any manifold M there is a unique maximal integral curve ~y of v through a given point.

Corollary 4.24. If M is compact, then a maximal integral curve of any vector field is defined
on all of R.

Proof. For each point m € M pick a chart (U, ¢) containing m. Writing ¢ = (x1,..., ),
we obtain the coordinate representation of the vector field v via the map y: Q := p(U) — RF.
Then v: (a,b) — U is an integral curve of v if and only if for I := ¢ o 7 we have

I'(t)=y(I'(t))  for t € (a,b),

cf. (4.19). By Theorem 4.21, there exists a neighborhood V,,, such that for each m € V,,
the integral curve - through 7 is defined on (—¢,,,&,,). By the compactness of M, we
can find a finite collection of points {m,...,m,} such that the corresponding collection of

neighbourhoods {V; := V;, | 1 < j < ¢} covers all of M. Set

min{e,,, |1 <5</}
2

Let v: (a,b) — M be a maximal integral curve of v. Assuming b < oo, the point mg :=
7(b— ¢) lies in some V. By the construction of ¢, there is a unique integral curve ,,,, which is
well-defined on (—2¢, 2¢) and satisfies 7,,,,(0) = mq. Set

o (0 be) o> M, W):{y(t) fort € (a, b—¢),
Yo (t —b+¢) forte [b—e b+e).

Notice that 4 is continuous since v,,, (b — €) = my = (b — ¢). In fact, by the construction 7 is

an integral curve of v on (a,b — €) U (b — &,b + ¢). It follows that 4 is a C'-integral curve of

v and therefore smooth by Exercise 4.20. Thus, 4 is an integral curve of v defined on a larger

interval. This contradicts the maximality of ~. 0

Exercise 4.25. Modify the proof of Corollary 4.24 to show the following: For any manifold M
and any vector field v such that

supp v := {m | v(m) # 0}
is compact, any maximal integral curve of v is defined on all of R.
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4.4 Flows and 1-parameter groups of diffeomorphisms

In this section I assume that M is a compact manifold.
For a vector field v define the flow of v to be the map

O:Rx M — M, O(t,m) = v (t).

Of course, this is just the map ® of Theorem 4.21 extended to the whole real line. Sometimes,
(4.22) is referred to as the local flow of v.
Beside the flow, for each fixed ¢ € R it is also convenient to consider

o0 M — M, O, (m) = ®(t,m) = Y ().
Proposition 4.26. The following holds:

(i) Each ®, is a diffeomorphism. Moreover, @, =0,
(ii) Foranyt,s € Rwe have ®; 0 Oy = O gy = O, 0 Oy
(iii) Py = idpy;
Proof. Form € M andt € R denote ®;(m) = 7. This means that 7,,(t) = m, where 7,, is an
integral curve of v such that 7,,(0) = m.

Consider the curve 3 defined by §(s) = 7,,(s + ¢). Then [ is an integral curve of v and
B(0) = v (t) = 1, that is 8 = ~,;,. Hence,

(1) = yr(s) = B(s) = mls +6) = Dypelm) = B0 B = By,
Since (iii) holds by the very definition of ®,, by (ii) we obtain
D_1od, =idpy = Prod_y.

In particular, each ®, is a diffeomorphism and ®; ' = &_, 0J

Definition 4.27. A 1-parameter group of diffeomorphisms is any smooth map ®: R x M — M
such that Properties (i)—(iii) of Proposition 4.26 hold.

To explain the above definition, notice that the set
Diff (M) := {f: M — M | f is a diffeomorphism }

is a group with respect to the composition operation. Diff (M) is called the diffeomorphism
group of M. With this understood, a 1-parameter group of diffeomorphisms is simply a homomorphism
of groups

R — Diff(M), t—

such that ®,(m) = ®(t, m) depends smoothly on (¢, m).

Thus, Proposition 4.26 states that each vector field on a compact manifold generates a 1-
parameter group of diffeomorphisms. Conversely, it turns out that any 1-parameter group of
diffeomorphisms generates a vector field in the following sense.

Proposition 4.28. For any [-parameter group of diffeomorphisms ® there exists a vector field
v, whose I-parameter group of diffeomorphisms coincides with P.
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Proof. For any m € M denote
Ym: R — M, Y (t) := ®(t,m) and v(m) := 4m(0).

The reader should check that v is a smooth vector field.
Furthermore, denote ~,,(t) = m and observe that

Vi (8) = ®g(m) = Dy (@t(m)) =Dy s(m) = Y (t + 5).
In other words, if a;: R — R is defined by a;(s) =t + s, then ~y,;, = ,,, © a;. Hence,
'U(’}/m(t)) = v(fn) = Tk 5:0(%) = (/Ym Oat)* 5:0(%)

s=t ° (at)*‘szo(%) = Vm*‘s:t(%) = Ym(t).

Thus, 7v,, is the integral curve of v. Therefore, the 1-parameter group of diffeomorphisms
generated by v is

= Ymx

(t,m) — Y (t) = ®(t,m),
In other words, the 1-parameter group of diffeomorphisms generated by v coincides with ®. [J

To sum up, for compact manifolds there is a natural bijective correspondence between vector
fields and 1-parameter groups of diffeomorphisms.
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Chapter 5

Differential forms and the Brouwer degree

5.1 Some elements of (multi)linear algebra
For any vector space V' over R of dimension %, we can associate the dual vector space
V*:={x:V — R | xislinear }.
Moreover, if v is a basis of V, then
V= (v, ..., V) uniquely determined by v;(v;) = dy;
is a basis of V*. In particular, dim V* = dim V' = k.
In the case V = R* we have a distinguished isomorphism

k
RF = (RY)", gy x(2) =Dz = (2y) (5.1)
j=1

so that in practice we identify (R*)" with R* via this isomorphism.

There are other ways to construct new vector spaces from a given one. Particularly relevant
for us will be the space of p-forms on V, where p € N. This is denoted by A?V* and consists
of all mapsw: V x --- x V — R such that the following holds:

(@) w(wy,...,Wj,...,w,) is linear in each argument;
(b) w(Wi,..., W), Wit1,...,Wp) = —w(Wy,...,Wj41,Wj,...,w,) forany wy,...,w, € V.

In particular, for p = 1 the second condition above is vacuous so that A'V* = V*,
Elements of APV* are called p-forms on V.
Let us consider the case p = 2 in some details. Notice that we have a natural map

V* x V* — A?V*, (x1,Xx2) = X1 A x2, Wwhere
X1 A Xz (Wi, wa) = x1(W1)xa(wa) — x1(wa)x2(w1).

Notice that this maps is skew-symmetric, that is x; A x2 = —x2 A x1. In particular, y A x =0
for any y € V™.
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Proposition 5.2. If v* is the dual basis of V*, then

* * * *

ViAVy, ViAVs, ..., vy AV,
* *
Vo A Vg, ..., Vo AV

(5.3)

is a basis of A2°V*. In particular, dim A*V* = —k(kz_l).

Proof. Notice first that (5.3) consists of linearly independent 2-forms:

Z/\ijvf AV =0 — 0= (Z/\ijvf /\V;) (Vp, Va) = Apg,

1<J 1<J

where p < q.

Furthermore, any 2-form w on V' can be uniquely represented as a linear combination
of (5.3), since

Nij = w(Vvi, v;j) = w= Z Aij Vi AV3. O
i<j

One more particularly important case arises when p = k. Define vi A --- A v} as follows.
Given any k-tuple w = (Wl, e ,Wk) of vectors in V', decompose each w; in terms of the basis
v, that is write w; = » . b;;v;. This yields a & x k-matrix B such that w = v - B. Set

ViA- AV (Wl,...,Wk) = det B.

Arguing just like in the case p = 2, we obtain that v A - - - A v} is a basis of A¥V*. In particular,
dim AFV* = 1.

For any linear map A: V' — W between linear spaces we can associate the dual map
AW =V (A*X) (v) = x(Av).
Just by the very definition of the dual map, we have
(AB)" = B*A* (5.4)

for any linearmaps A: V — Wand B: U — V.

Let v = (vi,...,v)) be a basis of V. Assume that w := Av = (Avy,..., Avy) is a basis
of W so that A is an isomorphism. Then A* maps w* to v*. In particular, the dual of an
isomorphism is itself an isomorphism.

In fact, for any p € N and A as above we have the corresponding map

A" APW* — APVE (A*w)(vl, Ce, V) = w(Avl, . 7Avp).

Notice that for this map, (5.4) still holds.

A particularly interesting case arises when p = k and W = V. Indeed, since dim A*V* = 1,
A*: A*V* — AFV* must be the multiplication with a number. To compute this number, let
w = (wy,...,wg) be a k-tuple of vectors in V. Writing w = v - B for some matrix B as above,
we obtain

Aw =v AB.
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Here, sligtly abusing notations, I denoted by A on the right hand side of the equality the matrix
of the linear map A with respect to the basis v. Hence,

A (VA AVE) (wi, ..., wi) = det (AB) = det A - det B
=det A-viA--- AV (Wi,..., Wg) —
A (ViN-Avp) =det A-vi A Avp.

Thus, for p = dim V', A* is the multiplication with det A. In fact, one could have taken this as
the definition of det A thus avoiding the choice of a basis.

5.2 'The cotangent bundle

Proceeding just like in Section 4.2, we can construct another manifold starting from ). Namely,
consider the set

T°M = |_| 1" M, where T M := (T,,M)" = {x: T,,M — R | y is linear }.
meM

This comes equipped with a map
m: T"M — M, m(x)=m & x €T, M.

For example, in the case M = R*, for each m € R* we have the linear isomorphism
k
A RE ST, M, Agy = y;0y], .
j=1

cf. (4.1). The dual of this map is also an isomorphism:
An T M — (RY)" =R,
More explicitly, if 9*|,, is the basis of T}, R¥, denote by dz|,, the dual basis, that is
Then
k
Al x =1y = X:Zyjdxj‘m:dx}m-y.

j=1

Hence, just like in the case of the tangent bundle, we obtain

TR = | | T;RF=R*xR*  and 7=m.

mecRk

Furthermore, let (U, ¢) be a chart on M. Write ¢ = (21, ..., x;) and just like in the case of
R” define dac|m to be the basis of 7% M dual to 0” |m Therefore, we obtain the bijection

k
UxRF = 77HU) = |_| T M, (m,y) — Zyjdlem‘

meU Jj=1
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Combining this with ¢: U — ¢(U), which is also a bijection, we obtain finally a bijective map

k
=17, 0U) x R" = 77 1(U), T(z,y) = Zyj dzj],-1(z)-
j=1

The following proposition is an analogue of Proposition 4.3 in the present setting. The proof
requires cosmetic changes only and is left as an exercise to the reader.

Proposition 5.5. Let U = {(Ua, o) | @ € A} be a smooth atlas on M. There is a unique
second countable and Hausdorff topology on T"* M such that

V= {(W_l(Ua), ) ]aeA}

is a C°-atlas on T* M, where T,, := Too- This atlas is in fact smooth so that T M is a smooth
manifold of dimension 2k. Moreover, 7 is a smooth map with surjective differential at each
point. 0

Remark 5.6. Part of the proof is to show that the coordinate transformation maps for V are given
by

@aﬂ(x, y) = ( 9045(1:)7 eotzﬂ*(x) Y )
Here I think of 6,3.(z) as a Jacobi-matrix of .4 and the superindex ¢ indicates the transposed
matrix. This should be compared with (4.6).

Definition 5.7. A smooth map w: M — 1™ M such that
Tov =idy = w(m) € T, M
is called a (smooth) differential 1-form on M (or, simply, just 1-form).

Denote
Q'(M) := {w is a smooth differential 1-form on M},

which has a structure of a C*>° (M )-module with respect to the pointwise addition and multipli-
cation.

Just like in the case of vector fields, any map w: M — T™M such that wow = id); admits a
coordinate representation. More precisely, this means that for any chart (U, ¢) on M such that
@ = (x1,...,xr) We can write

k
wim) =Y yi(m)day| = dz| -y(m),  y:U—R"
j=1

Proposition 5.8. The map w: M — T* M satisfying mo w = idy; is a smooth vector field if an
only if for each chart (U, @) as above the coordinate representation y of w is smooth. U

Example 5.9. For any y € R’ denote y, € (R)" the 1-form given by (5.1). If M C Rfisa
submanifold, then TM C R¢ x R, Define a differential 1-form w on M by

w‘m(w) = xy(W), where w € T,,M C R".
For example, choosing M = S? C R* and y = (1,0, 0) we obtain
w(w) = wi, whenever w € T;,5%.

The reader should check that this yields smooth 1-forms.
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Example 5.10 (The differential of a function). Let f be a smooth function on M. For any m €
M the differential of f is a linear map 7;,, M — T'(,,)R. Recall that we have the isomorphism

d
iR — R, A— = A,
dt

see (4.13). Hence, the composition

df| - T Ly

is a linear map, that is df’m el M.
Let us compute the coordinate representation of df. Thus, if (U, ¢) is a chart as above, then

Tf(m)R — R

d
df|,.(9;) = A, = [L0) =X o)
= I (a)h:)\-h’( (m)), Vh € C™(R)
— fl. =\, ho(f(m)), with ho(t) =t
— Gj}m 0 ° 8 | ( )\j
8 oF
Furthermore, since (0, ..., 0y) is a basis of T}, M, we obtain
df = Z)\ d; = aF d:cj.

That is, the coordinate representation of df is the map

OF OF >

xi—><a$1 o)

In particular, df is a smooth 1-form.

Example 5.11. Consider the following special case of the previous example: M = R* and

fj(x) = x;. Then
k

Thus, dx; is not just an element of the dual basis, but also the differential of the function z — z;.
This explains the choice of notations for the elements of the basis dual to 0*.

5.3 The bundle of p-forms

Even slightly more generally than in the previous section, consider the set

APT*M = | | APT; M,
meM
which is equipped with the natural projection 7: APT*M — M. Once again, we can define a
Hausdorff second countable topology on this set and a smooth atlas so that APT™* M becomes a
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smooth manifold. Given a chart (U, ), ¢ = (x1,...,2x), amap w: M — APT*M such that
mow = id); admits a coordinate representation with respect to this chart. In the case p = 2, this

. . k(k—1)
means that there is a unique map y: U — R~ 2 such that

Z Yii(m d:L‘Z A dxj|m
1<J

Then w is smooth if and only if each y;; is smooth. The reader can obtain all these statements
just by repeating the arguments used in the case of 7'M and T M.

Definition 5.12. Let w be a smooth p-form on M. Then the p-form f*w defined by

f*w’m(Vlw--an = w}f (fe(v1), s fe(vp)) forvy,...,v, € T,,M

is called the pull-back of w with respect to f.

Proposition 5.13. For any two smooth maps f: M — N and g: N — L and any w € QF(L)
we have

(g°f)'w=f(g"w).
Proof. The proof follows directly from Proposition 2.63. Indeed, for any vy, ...,
we have

ffgw)(vi,...,vp) = g*w(f*vl, .

v, € T,M

f*vp) - W(g*f*Vl, cee 7g*f*Vp) = (gof)*W(Vl, . ,Vp).
0J

Example 5.14. Consider dy; as a smooth 1-form on R’. This means that for any w € TyRe =~ R¢
we have dy;(w) = w;. If f: R¥ — R’ is any smooth map, then for u € T,R* = R* we have

afﬂ ngd —

(f*dy;) (w) = dy; (fou) =

k
df;
djzzax{dxi:dfj
i=1 ’

Example 5.15. Let w = Z§:1 w;(y) dy; be a 1-form on R* and f: R* — R’ be a smooth map.
Just like in the previous example, for any u € 7, R* we have

(f'w)(u) = w‘f(a:) (fuu) Z w; (f () dy; (f Z w;(f(2))df;(w) —
¢
Frw=> (wef)df; = 8ff - da,
j=1

]1Z1

Example 5.16. Let f € C°°(R*;R¥). For wy, ...,

wi € T,R* we have

f*(da:l A /\dxk)(wl,...,wk) =dry N--- /\dxk(f*wl,...,f*wk) = det B, where
g_ifll 3_3]:119 Wi ... Wik
B=1... —
le] 2]
8_:?i 8_3{2 Wger ... Wik
f*(dacl /\--~/\dxk)(wl,...,wk) :det( . x) ~dx; /\-~~/\dxk(wl,...,wk) -
Fdzy Ao Nday) = det (o] ) - day A+ A day.
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5.4 The differential of a 1-form

Theorem 5.17. For any manifold M there is a unique map d: QY(M) — Q*(M) with the
following properties:

(i) dis linear, that is

d()\lwl + )\2(4)2) = \dwy + )\QdWQ, \V/)\l, A € R and ‘v’wl,wQ € Ql(M),

(ii) d satisfies the Leibnitz rule, that is

d(fw) =df \w, VfeC®(M) and Yw e QY (M),

(iii) d commutes with pull-backs, that is

d(f*w) = f*(dw), VfeO®(M) and Yw € QY(M).

(iv) For any smooth function f we have

d(df) = 0.

The map d described in the above theorem is called the exterior differential (or, simply, the
differential).

Sketch of proof. Assume first that d exists. In the particular case M = R* any 1-form w can be
written as ) | w;(x) dx;. Then the linearity and the Leibnitz rule yield:

k k k
do = d( D wyde;) = 3 d(w; day) = 3 (dw A da; +w; d(day)
j=1 j=1 j=1

k (5.18)
= Z dwj A dl’j
j=1

With this understood, we can use (5.18) to define the exterior differential d: Q' (R¥) — Q?(RF).
A straightforward, albeit laborious, verification shows, that this map satisfies (i)—(iv) indeed.
For a general manifold M, we can proceed as follows. Pick a chart (U,, ¢,) and denote
VYo = @' pa(U,) — M. Then for any w € Q' (M) the pull-back 1)} w is a 1-form on an open
subset of R*. Denoting temporarily by dg« the differential acting on 1-forms on R¥, define

dyw ‘Ua =, (de (@béu))

On the overlap U,g = U, N Ug of two charts, we have

ou(drr (i) = o3 (dee (i) = dae(viw) = wioh (dae(v5e)).

The letter equality can be established as follows. By Proposition 5.13, we have

0ih (A (050) ) = (9 00)" (A (V3) ) = 03 (s (05) ).

Furthermore, using the fact that dr» commutes with the pull-backs, we arrive at
O5a (de (¢EW)> = dp (0505w) = diw (V5 © 0pa)'w) = i (Vo).

Hence, d); is well-defined. It is then straightforward to check that d,; satisfies (i)—(iv). 0]
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5.5 Orientability and integration of £-forms

Definition 5.19. An atlas A = {(U,,¢.) | @« € A} on M such that for all a, 8 € A the
inequality
det Oap. >0

holds everywhere on ¢g(U,5) C R¥ is called oriented. A maximal oriented atlas is said to be
an orientation of M. M is called orientable if it admits an orientation.

Example 5.20.

(a) Since R* admits an atlas consisting of just one chart, R is orientable. In fact, the default
orientation of R¥ is the maximal oriented atlas containing the chart (R¥, idgs).

(b) The atlas on S? consisting of two charts constructed in the Introduction is not oriented.
Indeed, by (1.3) we obtain

1 (vs—vi  —2up 1
Osn s = — — detblgny. = ——= (yz—y2)2+4y2y2 < 0.
|y|4 (_2y1y2 y% i y; |y|8( 2 1 1 2)

To obtain an oriented atlas, set

V= {(Un,én), (Us,ps)},

where o = peo pn and p(y1,y2) = (—¥y1, y2). Then the coordinate transformation map
is given by

éNS:pOQNS — detéNg*:—det9N5>0.
Hence, S? is orientable. Moreover, this atlas determines the default orientation of S2.
More generally, any k-sphere is orientable (oriented).

(¢c) The product of two orientable (oriented) manifolds is also orientable (oriented). For
example, the torus T? is oriented.

Let A be an orientation of M. Just like in Example 5.20, (b) fix any linear isomorphism
p: R¥ — R such that det p < 0. Then A := {(Uy,p°¢a) | @ € A} is also an orientation.
This is called the opposite orientation (to A).

Exercise 5.21. Prove that any connected orientable manifold admits exactly two orientations.

A standard example of a non-orientable manifold is the Mobius strip.
Let M be an oriented manifold of dimension k. Let w be a k-form on M such that supp w is
a compact subset contained in a chart (U,, ¢, ). Then 1%w is a k-form on R*, where 1, = ¢ 1.
We can write
Viw = ag(x,. .., z5) dxy A -+ - A dzg,

where supp a,, is a compact subset in (U) C R*. Define

/w::/ ao (21, ..., o) dey . .. dxy.
M ‘pa(Ua)
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We wish to show that this is well-defined, that is if (Ug, p3) is any other chart from the same
oriented atlas such that suppw C Ug, then

/ aa(xl,...,xk)dxl...dxk:/ ag(Yus .- k) dyr - . . dyp. (5.22)
va(Ua) vp(Us)

The computation required to verify this equality is similar to the one we did in the proof of
Theorem 5.17. Indeed,

Grathier = (1 050" = Vi —
GEQ(agdyl/\---/\dyk):aadxl/\---/\dxk -
ao () = (aﬁ o Qﬁa(x)) -det Ogq ().

Applying the change of variables formula in multiple integrals on R, we obtain

/ Ao () dx:/ (@a °8pa(y)) - | det Opa.(y)| dy
pa(Ua) ZICE))

_ / (o o 50 (y)) - det Bz (y) dy (5.23)
vp(Up)

= / ag(y) dy,
vp(Up)

where dx; . ..dxy is replaced simply by dx to simplify the notations. Notice that the second
equality in (5.23) crucially uses the fact that det z,. > 0. Thus, this establishes (5.22) and,
hence, proves that f W is well-defined.

More generally, assume that M is a compact oriented manifold. Choose a finite partition of
unity {p1,...,ps} such that supp p; is contained in a coordinate chart. For any w € QF(M)
this yields the decomposition

w= E Wy, where w;:=p;-w

Notice that suppw; C supp p; is contained in a coordinate chart.

Definition 5.24. Let M be a compact oriented manifold. For any w € Q*(M) define

J

J]=

We still need to check that | 1 w does not depend on the choice of the partition of unity. To
this end, let {v; | 1 < i < I } be another finite partition of unity such that supp v; is contained
in some chart for each 7. We have

o= () =55 =3 f e

where we used the fact that {1} is a partition of unity to obatin the first equality, additivity of
the integral in R to obtain the second one, and the fact that {p;} is a partition of unity to obtain
the last one. The above equality shows that fm w is well-defined indeed.
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Example 5.25. For M = S' choose charts (Uy, 1) and (Us, ¢2) such that
Uy :=S"\ {(1,0)}, y: (0,2m) — Uy, Yy (t) = (cost, sint);
Uy :=S"\ {(~1,0)}, Yo: (—m,m) = U, tha(s) = (coss, sins),

where 1); = goj_l. Let w be a differential 1-form defined on an open subset V' C R? containing
St In particular, we can write

w = a(z,y)dx +b(z,y) dy

for some smooth functions a and b on V. Notice that by the compactness of S! there exists a
constant C' > 0 such that

la(x,y)| < C and |b(z,y)| < C (5.26)

holds for all (z,y) € S*.

Furthermore, pick any positive ¢ < 1 and choose a smooth function py: S* — [0,1] such
that py o 1)y = 1 on [—¢,¢] and py © 1)y = 0 on the complement of [—2¢, 2¢]. Setting also
p1 := 1 — po, we obtain a partition of unity subordinate to {U;, Us }.

In order to compute | g1 W, it is convenient to compute ¢71*w = 97 first. Thus,

Yiw = (a(cost, sint) - (—sint) + b( cost,sint) - cos t> dt
(5.27)
Yiw = (a(cos s,sins) - (—sins) + b(cos s,sin s) - cos 3) ds

Therefore,

/51 s / pre / P = / (pron)wio+ / (pr o Y2) 5w

2m—2¢
= / Piw + / (p1 o) viw + / (p2 0 2)Ysw.
2 [0,2¢]U[27—2¢,271]

e [—2¢,2¢]

(5.28)

Using (5.27), (5.26) and |p2 ° wg‘ < 1, for the last term we have

| /[25 P22V | <4ce.

By a similar argument, the absolute value of the middle term on the right hand side of (5.28) is
also bounded by 4Ce. Hence, by passing to the limit as ¢ — 0, we obtain

2m
/ 1w = / ( — a(cost, sint) -sint + b(cost,sint) . cost) dt.
51 0
Example 5.29. Choose the following covering of S*:
Uy ={(z,y,2)€S5%|2>0}, U_.:={2<0}, and U.:={|z| <e}.

Arguing just like in the previous example, one can show that for any w € 9?(5?), we have

/wz/%w/%w,
52 D D
54
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where 1& ~ and 1) are defined in Example 5.20 (b) and D C R? is the disc of the unit radius.
For example, assume that w = dn for some n € Q'(S?). If

ven = a(x,y) de + bz, y) dy,

then applying the Greens formula we obtain

/Dwgdn:/Dd(ngn):/D(%—g—Z) dxdy:/SI (adx + bdy)

—/ (—a(cost,sint) -sint+b(cost,sint) -cost) dt
[0,27]

Notice that we have
fs = ¢S|51 =)goug: St — % (z,y) — (z,9,0),
where 161 : S — D is the embedding of the circle as the boundary of the disc. Hence,
fon=(vYse) n=1u(sn) =

1 fem :/[ | <— a(cost,sint) -sint+b(cost,sint> -cost) dt.
S 0,27

Here the last equality follows by Example 5.25. Thus,

/ VYgdn = / fsn. (5.30)
D St

By a similar argument, we also have

/ didn=— [ fin. (5.31)
D St

The minus sign appears for the following reason: when applying Greens formula, one should
orient S' as the boundary of D. This yields the opposite orientation of the equator.
Thus, by (5.30) and (5.31) we obtain finally

/ dn =10 for any n € Q'(S?).
52

5.6 The degree of a map

Let M and N be compact connected oriented manifolds of dimension k. Pick any w € QF(V)
such that [, w = 1. The existence of such forms can be established as follows: We can choose
a bump function p € C*(R*) such that suppp C B,(0) and a := fBT(O) p(x)dz > 0. Set

w = p(x)dxy A --- A dxy and choose a chart (U, ¢) on N such that o(U) D B,(0). Having
made these choices, we obtain

/gp*d):/ d):/ p(x)dr =a >0,
M 7‘(0) 7‘(0)

so that for w := a~'® we have [, w = 1.
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Definition 5.32. Let f: M — N be any smooth map. The number

deg f = /M frw

is called the Brouwer degree of f (or, simply, the degree of f), where w is any k-form on N
such that [, w = 1.

It is by no means obvious that deg f does not depend on the choice of w. The proof of
this is somewhat technical and is omitted here, however let me outline briefly the main steps
required. Assume for the sake of simplicity that £ = 2 (This is only needed, because the exterior
diffrential has been defined for 1-forms, however a suitable generalization of Theorem 5.17
yields the exterior differential as a map QF (M) — QPT1(M) for all p).

Thus, if w is another 2-form such that [, w; = 1, then for wy := w—w; we have [, wy = 0.
It is not too hard to show that there exists n € Q!(M) such that w = dn [BT03, Thm5.5.5].
Furthermore, one can show that

/ dn=20 (5.33)
M

holds for any w € Q'(M). This can be seen as follows. Using a partition of unity, write
n = >_;nj> where suppn; C U; and Uj is a chart. Using the Green’s formula, one obtains
5 dn; = 0 for each j. This in turn implies (5.33).

With this understood, we obtain

W =w—wy=w—dn = /w1=/w—/dn=/W,
M M M M

which shows that deg f is well-defined indeed.
Proposition 5.34. If deg f # 0, then f is surjective.

Proof. Since M is compact and N is Hausdorff, f(M) is closed in IV, cf. the proof of Corol-
lary 3.19. Hence, if f is non-surjective, then NV \ f(M) is an open non-empty subset. We can
therefore choose w € Q*(NV) such that [, w =1 and suppw C N\ f(M). Then we must have

deg f = [,, [fw =0. O

Let n € N be a regular value of f (recall that Sard’s theorem guarantees the existence of
regular values). Since f~'(n) C M is closed, this must be compact as a closed subset of a
compact space. Since n is a regular value, f~!(n) is in fact a finite set, see the proof of Step 4
of Theorem 2.29, that is

fn)={my,...,my}.
To any point m; we assosiate “a sign”, that is a number ¢; = %1 as follows. Let ¢, be a chart

on M centered at m; and ¢, be a chart on N centered at n. If F,,, is a coordinate representation
of f with respect to these charts, then det F,, , (0) # 0, since n is a regular value. Set

gj := sign (det F,,,.(0)).

We wish to show that €; does not depend on the choice of charts. Thus, let pg and 1, be
any other charts from the oriented atlases of M and N respectively. Then the required property
follows from the following computation:

Fay, =0, 0 Fop o005 —
sign ( det F, ,(0)) = sign (9%*(0)) sign (65,(0)) sign (det F,,.(0)) = sign ( det F,,,.(0))

With this understood, we have the following result.
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Theorem 5.35. If n is a regular value of f, then

degf:Zesj: Z g(m).

mef~t(n)
In particular, deg f € Z.

Proof. Since n is a regular value of f, there exists a neighbourhood V' of n and neighbourhoods
U; of each m; such that f: U; — V is a diffeomorphism, compare with the proof of Step 4 of
Theorem 2.29. Without loss of generality, we can assume that each U; and V' are domains of
some charts (U;, ;) and (V, ¢).

By the argument given at the beginning of this section, there exists a k-form on N such that

/ w=1 and suppw C V.
N

Hence, f*w is supported on U; U - - - LI Uy. In particular,

¢
deg f = I
eg ;/UJ w

Furthermore, denote (1) !)"w = n € QF(R¥) and &; := o f: U; — (V). Since f: U; —
V' is a diffeomorphism, (Uj, ;) is a chart on M. If this chart is positively oriented, then

[ro=f @y weghe-[ -t

J J J

Exercise 5.36. Show that if (U;, {;) is negatively oriented, then

[ romt

By noticing that (U;,&;) is positively (negatively) oriented if and only if ¢; is positive
(negative), we obtain

¢
[fw=c¢; = degszej,
j=1

Uj
which finishes the proof of this theorem. 0J

Remark 5.37. Theorem 5.35 should be compared with (2.32), where all points were counted
with the “+” sign. The reason this worked, is that for any holomorphic function each point
counts positively indeed, so that (2.32) is the degree of (2.30) in the sense of Definition 5.32.
Thus, in some sense Theorem 5.35 is a pretty powerful and far reaching generalization of the
proof of Theorem 2.29.

Remark 5.38 (A short proof of the fundamental theorem of algebra). With the technology we
developed up to this point, the proof of the fundamental theorem of algebra can be made pretty
short. Indeed, if f: S? — S?is defined by (2.30), then by Sard’s theorem f admits a regular
value n # N. Since f~'(n) # & by the proof of Step 5 of Theorem 2.29, deg f is positive
since each point in f~!(n) counts positively. Hence, f is surjective by Proposition 5.34. This
immediately implies that p is surjective. In particular, p has a root.
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Chapter 6

Further developments

In this chapter I gathered some further developments of the ideas discussed in the previous
sections. The proofs are very sketchy (if any) and the reader is advised to check the references
for further details.

6.1 The hairy ball theorem

An interesting corollary of the ideas, which were discussed in Section 5.6 is the following result.
Theorem 6.1. Any vector field on S*" has at least one zero.

This theorem is known as the hairy ball theorem due to the following formulation: "You
can’t comb a hairy ball flat without creating a cowlick".

Theorem 6.1 is particularly striking when compared with the following observation: Any
odd-dimensional sphere admits a nowhere vanishing vector field. Indeed, an example of such a
vector field on S?"*! is given by

U(xo, Lise - 7$2n,$2n+1) = ( — 21, %05 - -5 —T2n+1, $2n)-
Definition 6.2. Two smooth maps fj, fi: M — N are said to be (smoothly) homotopic, if there
exists a continuous map h: M x [0,1] — N such that each h; := h} (M is smooth and
]’LO = f() and hl = fl-
In this case we write fo ~ f;. The map h is called a homotopy between f; and f;.

The proof of the hairy ball theorem is based on the following simple result, which is of
independent interest.

Lemma 6.3. If fy and f, are homotopic, then deg f, = deg f.
Proof. Let fy and f; be two homotopic maps and h be a homotopy. Clearly, the map

t— | hjw
M

is a continuous function on [0, 1]. By Theorem 5.35 this function takes values in the discrete
space Z and therefore must be constant. In particular,

degfoz/ hgw:/ h“{w:/ fiw = deg fi.
M M M
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Proof of the hairy ball theorem. The proof consists of the following two steps.
Step 1. The degree of the antipodal map on an even dimensional sphere equals —1.

A direct computation shows that the coordinate representation of the antipodal map with
respect to the chart (52" \ {S}, ¢g) is

_ 1 n
Hy = ¢s°h1°€051> Hi(y) :—WQI—HSN(y)a y € R*"\ {0},

cf. (1.3). Since gy is a diffeomorphism, for each z € R?*"\ {0} there is a unique y € R?"\ {0}
such that H,(y) = z. Moreover, by (a generalization of) Example 5.20 (b), we have

det Hy.(y) = det Oy (y) <O — deghy = —1,

where we have used Theorem 5.35.

Step 2. Assume S*™ admits a nowhere vanishing vector field v. Then the degree of the atipodal
map must equal 1.

Think of v as a map S?" — R?"*! satisfying
(v(z),z)y =0 for all z € S*".

Since v vanishes nowhere, the map () := v(z)/||v(x)]| is also a vector field on S*" satisfying
|o(z)|| = 1 for all x € S*". In particular, we can view © as a map S** — S2",
Define a map

h: S%" x [0,1] — S*" by h(z,t) := x cos(mt) + v(x) sin(mwt).

Since (9(x),x) = 0, we have ||h(x,t)||> = cos?(nt) + sin?(nt) = 1 so that h takes values in
S?" indeed.
Furthermore, since
ho(z) =z and hi(z) = —x,

h is a homotopy between idg2» and the antipodal map h,. Hence, by Lemma 6.3 we obtain

1= deg idsQn = deg hl.

This finishes the proof of this step and the proof of the hairy ball theorem, since the conclusions
of the above two steps contradict each other. U

6.2 The Euler characteristic

Let M be an oriented manifold of dimension k.
Let v be a vector field on M such that v(mg) = 0 and v(m) # 0 for all m # mg from some
neighbourhood V' of my. In this case we say that m, is an isolated zero of v.
Choose a chart (U, ¢) centered at mg. The coordinate representation v = Z?Zl vj(x) 0,
yields a map
R* — R*, x> (vl(x),...,vk(aj)), (6.4)
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which is well-defined on a closed ball B, (0) for some 7, > 0 sufficiently small and vanishes
nowhere except at the origin. For any € (0, ry) consider the map

1

h,: Skt — gkt h,(m) =
(m) Vui(rm)2 + -+ + vg(rm)?

(vl(rm), - ,vk(Tm))a

where m € S*~1. In other words, h, is essentially the restriction of (6.4) to the sphere of radius
r normalized so that this maps into S*~1,

Definition 6.5. Let m be an isolated zero of v. The integer
I(U7 mO) = deg h’r
is called the local index of v at my.

Notice that by Lemma 6.3, I(v, m,) does not depend on r, since h, and h, are manifestly
homotopic provided r, p € (0, 7). Also, the local index does not depend on the choice of the
chart near mq [BT03, Lemma 7.3.8].

Assume in addition that M is compact and that v has isolated zeros only. Hence, the number
of zeros is finite.

Theorem 6.6. Let v be a vector field on a compact oriented manifold with isolated zeros only.
The integer

X(M) =Y I(v,mo) 6.7)
mEv—1(0)
does not depend on v and is called the Euler characteristic of M. 0

The above theorem is a corollary of the so called Poincaré—Hopf theorem [BT03, Thm 7.6.5].
Notice that in the Poincaré—Hopf theorem as stated in [BT03] the Euler characteristic is defined
as a certain topological invariant of M a priory unrelated to vector fields. I have taken the
liberty to define the Euler characteristic by (6.7), which makes obscure that that this number is
independent of v.

6.3 On the classification of manifolds

Let M; and M, be two connected oriented manifolds of dimension &£. Choose m; € M; and a
chart (Uj, ¢;) centered at m;. Assume that B;(0) C ¢;(U;) and denote ; := ¢ Bi(0) —
M;. Using the diffeomorphism B;(0)\ {0} = 5" x (0, 1), we can vie ¢; as a diffeomorphism
S"7 % (0,1) = 4 (B1(0)) \ {my}-

Definition 6.8. The space

Ml#MQ = (Ml \ {ml} LJ M2 \ {mg})/ ~, where
o1(x, 1) ~ po(x, 1 — 1), re S tandr € (0,1),

is called the connected sum of M, and M.

{ Figure. J

It can be shown that M;# M, is again an oriented manifold of dimension k. Moreover,
M, # M, does not depend on the choices involved in the construction (meaning the following:
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For any other choice of points m; and charts (U, ;) as above the results of the above construction
are diffeomorphic).
Denote

No=25% =T X,=T#T? ..., X,=#,T" (6.9)

The number g is called the genus of .

Theorem 6.10. The Euler characteristic of X, is given by

xX(Eg) =2 —2g.
O

Notice that the hairy ball theorem follows from Theorems 6.10 and 6.6. In fact, these two
theorems imply that any vector field on any surface >, has at least one zero except in the case
g=0.

Theorem 6.11 (Classification theorem for compact orientable surfaces). (6.9) is a complete list
of compact connected orientable surfaces (i.e., 2-manifolds). This means that each compact
connected orientable surface is diffeomorphic to exactly one surface from (6.9). In particular,
2, is diffeomorphic to ¥y, if and only if g = h. 0

Related to this is the following more elementary result.

Theorem 6.12 (Classification of curves). Each connected curve (i.e., 1-manifold) is diffeomor-
phic either to the interval (0, 1) or to the circle S*.

Proof. See [Mil65] or [GP74]. O

A classification of compact manifolds in all dimensions is unknown up to now, however
many interesting results are known. Below is a selection of some of those.

Theorem 6.13 (Milnor’56). There are smooth T-manifolds, which are homeomorphic but not
diffeomorphic to S”. U

Later, Kervaire and Milnor showed that there are exactly 28 seven-manifolds, which are
homeomorphic but not diffeomorphic to S”. It is even possible to give explicit examples of
such manifolds. For example,

M, ={2€C°|2{+2+z+2+2""=0}nS},

where r < landa = 1,2,..., 28, are such examples.

A lot is known about manifolds, which are homeomorphic but not diffeomorphic to S
for other values of n. For example, any three-manifold, which is homeomorphic to S® must
be in fact diffeomorphic to S3. However, it remains unknown up to now, if there is a four-
manifold, which is homeomorphic but not diffeomorphic to .S 4. In contrast, Taubes showed in
1987 that there are uncountably many smooth four-manifolds, which are homeomorphic but not
diffeomorphic to R*. This fascinating story goes, however, far beyond the goals of this course.
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6.4 The Gauss map

Let V' be a finite dimensional vector space. Two bases v and w of V' are said to be cooriented
if det B > 0, where w = v - B. Otherwise, we say that v and w have opposite orientations.
An orientation of a vector space is a choice of one of the two classes of cooriented bases. For
example, the standard basis of R* determines a standard orientation of R*.

If M is an oriented manifold, we can orient each tangent space 7;, M as follows. Picking a
chart (U, ¢) from the oriented atlas containing m, we obtain a basis

d(m) = (01,...,0k) (6.14)

of T,,M. Tt follows from the definition of the oriented atlas and (4.4) that any other basis
obtained in this way is cooriented with (6.14). Thus, any tangent space of an oriented manifold
is oriented.

With this understood, assume M? is an oriented surface, which is a submanifold of R®. Then
for each m € M there is a unique vector n(m) € R? with the following properties: |n(m)| = 1
and (n(m), Vi, VQ) is an oriented basis of R? provided (vy, vs) is an oriented basis of T}, M. In

fact, we must have
Vi X Vo

n(m) = ———,
( ) |V1 X V2|
where x denotes the cross-product in R?. It follows that n depends smoothly on m, that is the
map

G: M — S?% G(m) :=n(m)

is smooth. This is called the Gauss map.
One can show that the following interesting result holds.

Theorem 6.15 ([BT03, Cor. 7.6.6]). If M? is a compact connected oriented surface embedded
in R3, then
deg G = x(M).

Furthermore, define w € Q?(S5?) as follows: for any pair of vectors vy, vo € 7,5 set
W|m<V1, V2> = dﬂfl N dZL’Q A d.ng (G(m), Vi, Vg),

where G is the Gauss map of the standard embedding S 2 5 R3 (thatis, G (x) = x). Hence, we
obtain
X(M) = deg G = / G*w. (6.16)
M
It turns out that the 2-form G*w € Q?(M) depends only on the “inner geometry” of M in
the following sense: Each tangent space 7,,, M inherits a scalar product (-, -),,, which depends
smoothly on m, that is the Gram matrix of this scalar product with respect to any basis of the
form (6.14) has smooth entries. Then G*w depends only on this scalar product but not (directly)
on the embedding into R®. This 2-form is called the curvature of M and is a local invariant of
M, that is its value at m can be computed by knowing the scalar product in any neighbourhood
of m. On the contrary, x (M) characterizes M as a whole object and (6.16) is a beautiful relation
between these local and global properties of M. This is known as the Gauss-Bonnet theorem,
which is one of the most beautiful results in mathematics.
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