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Chapter 1

Introduction

1.1 The de Rham cohomology groups
Let M be a manifold of dimension n. Denote by Ωk (M) the space of differential k-forms on
M . Recall that there exist a unique R-linear map d : Ωk (M) → Ωk+1 (M) with the following
properties:

(i) df is the differential of f if f ∈ C∞ (M) = Ω0 (M);

(ii) d (ω ∧ η) = dω ∧ η + (−1)q ω ∧ dη if ω ∈ Ωq (M);

(iii) d2 = 0.

The last property simply means that d (dω) = 0 for each ω ∈ Ωk (M). This yields the de
Rham complex

0 → Ω0 (M)
d−→ Ω1 (M)

d−→ . . .
d−→ Ωk−1 (M)

d−→ Ωk (M)
d−→ Ωk+1 (M)

d−→ . . .
d−→ Ωn (M) → 0

(1.1)

Remark 1.2. The map d : Ωk (M) → Ωk+1 (M) depends on k, however this is suppressed in
the notations.

Property (iii) means that (1.1) is a complex, that is the kernel of d : Ωk → Ωk+1 contains
the image of d : Ωk−1 → Ωk and therefore we can define

Hk
dR (M) :=

Ker
(
d : Ωk (M) → Ωk+1 (M)

)
Im (d : Ωk−1 (M) → Ωk (M))

(1.3)

This is called the kth de Rham cohomology group, which is in fact a vector space.
Assume that M is closed, that is M is compact and has no boundary. Then the number

bk (M) := dim Hk
dR (M)

is finite. It is called the kth Betti number of M and is an invariant of M .

Remark 1.4. While it is by no means obvious from the above description, Betti numbers are
topological invariants of M , that is bk (M) = bk (N) provided M and N are homeomorphic. In
paticular, Betti numbers do not depend on the smooth structure.

Coming back to the de Rham cohomlogy groups, each element in Hk
dR (M) is represented

by the equivalence class
[ω] =

{
ω + dη | η ∈ Ωk−1 (M)

}
,
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Global analysis

where ω ∈ Ωk (M) is closed: dω = 0. Hence, we may ask the following question: What is the
best representative in [ω]?

Of course, at this point the above question is vague, since the notion of being "the best" is
undefined. One possibility to make this more precise is as follows. Just by its definition, the set
[ω] is an affine subspace of Ωk (M). We could call an element in [ω] "the best" if it is the closest
one to the origin just as shown schematically on Figure 1.1.

Ωk (M)

[ω]

Figure 1.1: A choice of a representative in the de Rham cohomology class.

However, this raises our next question: How do we measure distance in Ωk (M)? A suitable
answer to this question requires a detour, which we do next.

1.2 Some linear algebra
Let V be a vector space of dimension n over R. Recall that for each basis e = (e1, . . . , en) of
V there exist a unique basis e∗ = (e∗1, . . . , e

∗
n) of the dual vector space V ∗ such that

e∗i (ej) = δij =

{
1, if i = j,

0, if i ̸= j.

e∗ is called the dual basis to e.

Assume ⟨·, ·⟩ is a scalar product on V . If e = (e1, . . . , en) is an orthonormal basis of V , that
is

⟨ei, ej⟩ = δij,

then the dual basis e∗ is given explicitly by

e∗i := ⟨ei, ·⟩ ⇐⇒ e∗i (v) = ⟨ei, v⟩ for v ∈ V.

Then V ∗ has a unique scalar product such that e∗ = (e∗1, . . . , e
∗
n) is an orthonormal basis.

Explicitly, for ξ, η ∈ V ∗ define

ξi := ξ (ei)
ηi := η (ei)

⇐⇒ ξ =
∑
ξi e

∗
i

η =
∑
ηj e

∗
j
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=⇒ ⟨ξ, η⟩ =
n∑
i=1

ξiηi =
n∑
i=1

ξ (ei) η (ei) .

To sum up, for any scalar product on V there exists a unique scalar product on V ∗ such that
the dual basis of an orthonormal basis is itself orthonormal.

More generally, any basis e of V yields a basis of ΛkV ∗. Explicitly,

Λke∗ :=
{
e∗i1 ∧ . . . ∧ e∗ik | 1 ≤ i1 < i2 < . . . < ik ≤ n

}
(1.5)

is a basis of ΛkV ∗ consisting of (
n
k

)
=

n!

(n− k)!k!

elements. Just like in the case of V ∗ = Λ1V ∗, we can define a scalar product on each ΛkV ∗ by
declaring (1.5) to be an orthonormal basis.

Recall that any two bases e and f of V are related by a change-of-basis matrix A. This
means

f = e · A ⇐⇒ fi =
n∑
j=1

aij ej

Then e and f are said to be cooriented, if detA > 0. It is easy to check that

e ∼ f ≡ e and f are cooriented

yields an equivalence relation on the set of all bases of V . Moreover, there are exactly two
equivalence classes represented by e and ē = (−e1, e2, . . . , en).

Definition 1.6. An orientation on V is a choice of an equivalence class of bases of V . Any basis
in the chosen class is said to be positively oriented and any basis, which does not belong to the
selected class is said to be negatively oriented.

Example 1.7. For Rn the class of the standard basis is called the standard orientation of Rn.

Example 1.8. Any ω ∈ ΛnV ∗, ω ̸= 0, determines an orientation of V by the rule: e is positively
oriented if and only if

ω (e1, . . . , en) > 0.

For example, if e∗ = (e∗1, . . . , e
∗
n) is the dual basis to the standard one, then

ω := e∗1 ∧ . . . ∧ e∗n (1.9)

determines the standard orientation of Rn.

Definition 1.10. Let V be an oriented Euclidean vector space of dimension n. An n-form ω is
said to be the Euclidean volume form, if

ω (e1, . . . , en) = 1 (1.11)

holds for any positively oriented orthonormal basis e of V .

For example, in the case V = Rn, which is equipped with the standard scalar product and
orientation, (1.9) is the Euclidean volume form.

Example 1.12. Show that any oriented Euclidean vector space admits a unique Euclidean
volume form. This is sometimes denoted by vol.
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Proposition 1.13. There is a unique linear map

∗ : ΛkV ∗ → Λn−kV ∗ satisfying ξ ∧ ∗ η = ⟨ξ, η⟩ vol (1.14)

for all ξ , η ∈ ΛkV ∗.

Proof (Sketch). Let e be a positively oriented orthonormal basis of V . Set

η := e∗i1 ∧ . . . ∧ e∗ik ∈ Λke∗

Then assuming that ∗ exists, for

ξ =
∑

ξj1...jk e
∗
j1
∧ . . . ∧ e∗jk

we must have
ξ ∧ ∗ η = ⟨ξ, η⟩ vol = ξi1...ik · e∗1 ∧ . . . ∧ e∗n.

This yields
∗ η = ∗

(
e∗i1 ∧ . . . ∧ e∗ik

)
= ε · e∗l1 ∧ . . . ∧ e∗ln−k

, (1.15)

where ε ∈ {±1} and 1 ≤ l1 < . . . < ln−k ≤ n consists of those integers in the interval [1, n]
which are complementary to {i1, . . . , ik}.

For example, if n = 6 and η = e2 ∧ e4, then

∗ (e∗2 ∧ e∗4) = ε e∗1 ∧ e∗3 ∧ e∗5 ∧ e∗6 .

To determine ε, we compute

e∗2 ∧ e∗4 ∧ ε (e∗1 ∧ e∗3 ∧ e∗5 ∧ e∗6) = −ε vol ,

e∗2 ∧ e∗4 ∧ ∗ (e∗2 ∧ e∗4) = ∥ e∗2 ∧ e∗4 ∥2 · vol = vol,

which yields ε = −1 so that we finally obtain

∗ (e∗2 ∧ e∗4) = −e∗1 ∧ e∗3 ∧ e∗5 ∧ e∗6.

In general, ε is the signature of the permutation (i1, . . . , ik, j1, . . . , jn−k).
Thus, (1.15) defines ∗ on the elements of the basis Λke∗. This yields a unique linear map

∗ : ΛkV ∗ → Λn−kV ∗, which satisfies (1.14). □

The map ∗ defined in the above proposition is called the Hodge operator.

Remark 1.16. It follows from the proof of the above proposition that the Hodge operator satisfies

∗ ∗ ω = (−1)k(n−k) ω for all ω ∈ ΛkV ∗. (1.17)

1.3 Riemannian metrics
Definition 1.18. A Riemannian metric g on M is a smooth section of T ∗M ⊗ T ∗M such that
the following holds:

(i) g is symmetric, that is

g (v, w) = g (w, v) for all v, w ∈ TmM and any m ∈M ;
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(ii) g is positive-definite, that is

g (v, v) > 0 for all v ∈ TmM, v ̸= 0, and any m ∈M.

In other words, g is a family {gm | m ∈M} of scalar products on each TmM and gm
depends smoothly on m. In particular, each TmM is an Euclidean vector space. Hence, each
ΛkT ∗

mM is also an Euclidean vector space.
An orientation of a manifold M is (informally speaking) a choice of coherent orientations

of TmM for each m ∈M . More formally, we have the following.

Definition 1.19. A manifold M of dimension n is said to be orientable, if there exists ω ∈
Ωn (M) such that ωm ̸= 0 for all m ∈M .

By Example 1.8, for each m ∈ M the n-form on TmM determines a class of positively
oriented bases of TmM , that is an orientation. Notice that for any function f , which is positive
everywhere, the forms ω and f · ω determine the same orientation on each TmM .

Albeit not all manifolds are orientable, orientability is a mild restriction. In particular, for
any connected non-orientable manifold M there exists a unique connected double covering
M2 → M , which is orientable. The reader may find more information on this for example
in [Hir94, Sect. 4.4].

Definition 1.20. An orientation of an n-manifold M is a class of n-forms JωK, where

• ω is a nowhere vanishing n-form on M .
• ω1 ∼ ω2 if and only if there exists an everywhere positive function f such that ω2 = f ·ω1.

Notice that J·K above is not the de Rham cohomology class.
Just like in the preceding section, a differential n-form ω on M is said to be a Riemannian

volume form, if
ωm (e1, . . . , en) = 1 (1.21)

holds for any m ∈M and any oriented orthonormal basis (e1, . . . , en) of TmM . Property (1.21)
determines a Riemannian volume form uniquely. This volume form is denoted by vol.

Thus, by the preceding subsection, a Riemannian metric and orientation on M induce for
each k ≤ n the Hodge operator ∗ : Ωk (M) → Ωn−k (M) such that

ω ∧ ∗ η = ⟨ω, η⟩ vol and ∗ ∗ω = (−1)k(n−k) ω

holds for all ω, η ∈ Ωk (M).

1.4 Harmonic forms
Let us come back to the original question about "the best" representatives of the de Rham
cohomology classes. Thus, we define the L2-scalar product on each Ωk (M) by setting

⟨ω, η⟩L2 :=

∫
M

⟨ωm, ηm⟩ volm =

∫
M

ω ∧ ∗ η.

With this at hand, we could call an element ω̂ ∈ [ω] "the best", if ω̂ minimizes the distance
to the origin, that is if

inf
η∈Ωk−1(M)

∥ ω + dη ∥2L2 = ∥ ω̂ ∥2L2 . (1.22)
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Then, if (1.22) holds, for any η ∈ Ωk−1 (M) we must have

0 =
d

dt

∣∣∣∣
t=0

∥ ω̂ + t dη ∥2L2

=
d

dt

∣∣∣∣
t=0

(
∥ ω̂ ∥2L2 + 2t⟨ω̂, dη⟩L2 + t2∥ dη ∥2L2

)
= 2⟨ω̂, dη⟩L2

(1.23)

Proposition 1.24. Denote d∗ := (−1)nk+1 ∗ d ∗ : Ωk+1 (M) → Ωk (M). If M is closed, then
the following holds:

(i) d∗ is the formal adjoint of d, that is

⟨dω, η⟩L2 = ⟨ω, d∗η⟩L2 for all ω ∈ Ωk (M) and η ∈ Ωk+1 (M) . (1.25)

(ii) (1.23) is equivalent to
d∗ω̂ = 0. (1.26)

Proof. Notice first that (1.14) and (1.17) imply the equality

ω ∧ ζ = (−1)k(n−k) ⟨ω, ∗ ζ⟩vol for all ω ∈ Ωk (M) and ζ ∈ Ωn−k (M) .

Using this, we obtain

⟨ω, d∗η⟩L2 = (−1)kn+1

∫
M

⟨ω, ∗ d ∗ η⟩ vol

= (−1)kn+1+k(n−k)
∫
M

ω ∧ d ∗ η

= (−1)1−k
2

∫
M

(−1)k (d (ω ∧ ∗ η)− dω ∧ ∗ η)

Here the last equality follows from the Leibnitz rule:

d (ω ∧ ζ) = dω ∧ ζ + (−1)k ω ∧ dζ

provided ω ∈ Ωk (M) and ζ ∈ Ωl (M). Hence, applying Stokes’ theorem and recalling that
∂M = ∅, we obtain

⟨ω, d∗η⟩L2 = (−1)k−k
2+2

∫
M

dω ∧ ∗ η = (−1)k−k
2 ⟨dω, η⟩L2 .

By noticing that k2 is even/odd if and only if k is even/odd, we arrive finally at (1.25).
To prove (ii), notice that

d∗ω̂ = 0 =⇒ 0 = ⟨d∗ω̂, η⟩L2 = ⟨ω̂, dη⟩L2 .

Conversely, setting η = d∗ω̂ in (1.23), we obtain

0 = ⟨ω̂, dd∗ω̂⟩L2 = ⟨d∗ω̂, d∗ω̂⟩L2 = ∥ d∗ω ∥2L2 =⇒ d∗ω̂ = 0.

□
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Notice that (1.26) is nothing else but the Euler-Lagrange equation for the functional

f :
{
ω + dη | η ∈ Ωk−1 (M)

}
−→ R, f (ω + dη) = ∥ ω + dη ∥2L2 (1.27)

Definition 1.28. The map

∆ = dd∗ + d∗d : Ωk (M) → Ωk (M)

is called the Laplace operator (or, simply, the Laplacian). A k-form ω such that ∆ω = 0 is
called harmonic.

Proposition 1.29. On a closed manifold a k-form ω is harmonic if and only if

dω = 0 and d∗ω = 0. (1.30)

Proof. If (1.30) holds, then ω is clearly harmonic. To show the converse, consider

0 = ⟨∆ω, ω⟩L2 = ⟨dd∗ω, ω⟩L2 + ⟨d∗dω, ω⟩ = ∥ d∗ω ∥2L2 + ∥ dω ∥2L2 .

Here the last equality follows by Proposition 1.24, (i). Since both summands are non-negative,
we obtain (1.30). □

Theorem 1.31. If a minimizer ω̂ of (1.27) exists, then ω̂ is harmonic. Moreover, if ω̂ exists, then
it is unique.

Proof. Assume ω̂ exists. Since ω̂ = ω + dη for some η ∈ Ωk−1 (M), we have

dω̂ = dω + d (dη) = 0 + 0.

Combining this with (1.26), we obtain by Proposition 1.29, that ω̂ is harmonic.
Furthermore, let ω̂ = ω+ dη and ̂̂ω = ω+ dζ be two harmonic representatives of [ω]. Then

0 = d∗ω̂ − d∗ ̂̂ω = d∗
(
ω̂ − ̂̂ω) = d∗d (η − ζ) .

Denoting temporarily ξ := η − ζ , we obtain

0 = ⟨d∗dξ, ξ⟩L2 = ⟨dξ, dξ⟩ = ∥ dξ ∥2L2 =⇒ dξ = 0 =⇒ dη = dζ =⇒ ω̂ = ̂̂ω.
This proves the uniquesness. □

Our aim is to prove the following.

Theorem 1.32. (Hodge) Each de Rham cohomology class is represented by a unique harmonic
form.

Notice that since we have already proved the uniqueness, it is the existence, which remains
to be proved. It turns out that this is somewhat harder and requires certain technology, which
we will consider first.

Notice that for any oriented Riemannian manifold, the Laplacian on Ω0 (M) = C∞ (M) is
given by

∆f = d∗df = − ∗ d ∗ df. (1.33)
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Example 1.34. Consider the case M = R3 equipped with the standard Euclidean matric. If
(x, y, z) are coordinates on R3, then

∗ df = ∗
(
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

)
=
∂f

∂x
dy ∧ dz − ∂f

∂y
dx ∧ dz + ∂f

∂z
dx ∧ dy.

Hence,

d ∗ df =

(
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

)
dx ∧ dy ∧ dz =⇒ ∆f = −

(
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

)
.

Sometimes this is called "the non-negative Laplacian", since its eigenvalues are non-negative.
More generally, if the Riemannian metric on Rn is given by a positive-definite matrix (gij),

where gij = gij (x), then the corresponding Laplacian on functions is given explicitly by

∆f = − 1√
|g|

∂i

(√
|g| gij∂jf

)
, (1.35)

where |g| = | det (gij) | and (gij) = (gij)
−1. This is sometimes called the Laplace-Beltrami

operator.

Let M be a closed oriented Riemannian manifold.

Proposition 1.36 (Green’s identity). For any ω, η ∈ Ωk (M) we have

⟨∆ω, η⟩L2 = ⟨ω,∆η⟩L2 = ⟨dω, dη⟩L2 + ⟨d∗ω, d∗η⟩L2 .

Proof. By Proposition 1.24 (i), we have

⟨dd∗ω + d∗dω, η⟩ = ⟨d∗ω, d∗η⟩+ ⟨dω, dη⟩.

By the same token,
⟨ω, dd∗η + d∗dη⟩ = ⟨d∗ω, d∗η⟩+ ⟨dω, dη⟩,

which yields the claim of this proposition. □

Corollary 1.37. On a closed connected manifold any harmonic function is constant.

Proof. If f ∈ C∞ (M) is harmonic, by Green’s identity (with ω = η = f ) we obtain

0 = ⟨∆f, f⟩ =∥ df ∥2L2 =⇒ df = 0 =⇒ f is constant.

□

The Hodge theorem follows from the following more general result, which is also attributed
to Hodge.

Theorem 1.38. (Hodge) Let M be a closed oriented Riemannian manifold and η ∈ Ωk (M).
The equation ∆ω = η has a solution if and only if

⟨η, ω0⟩L2 = 0 (1.39)

for any harmonic k-form ω0.
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It is easy to see that (1.39) is a necessary condition. Indeed, if there is ω ∈ Ωk (M) such
that ∆ω = η, then Green’s identity yields

⟨η, ω0⟩L2 = ⟨∆ω, ω0⟩L2 = ⟨ω,∆ω0⟩L2 = 0

for any harmonic k-form ω0.
The proof that (1.39) is a sufficient condition will be given later. Taking this as granted for

now, from Corollary 1.37 we obtain the following.

Corollary 1.40. Let M be a closed oriented Riemannian manifold. The equation

∆f = h, f, h ∈ C∞ (M)

has a solution if and only if ∫
M

h · vol = 0.

Let me also show that Theorem 1.38 implies that any de Rham cohomolgy class is represented
by a harmonic form. To this end, pick any closed k-form ω. Then by Proposition 1.29, ω + dη
is harmonic if and only if

d (ω + dη) = 0
d∗ (ω + dη) = 0

⇐⇒ d∗ (ω + dη) = 0 ⇐⇒ d∗dη = −d∗ω. (1.41)

Furthermore, consider instead the equation

∆η = −d∗ω. (1.42)

If η0 is any harmonic (k − 1)-form, then

⟨d∗ω, η0⟩L2 = ⟨ω, dη0⟩L2 = 0,

since η0 is closed. Hence, Theorem 1.38 guarantees that (1.42) has a solution η.
Furthermore, notice that (1.42) is equivalent to d∗(dη + ω) + dd∗η = 0. However, the two

summands appearing on the left hand side are L2-orthogonal:〈
d∗(dη + ω), dd∗η

〉
L2 =

〈
dη + ω, d2d∗η

〉
L2 = 0.

Hence, if η is a solution of (1.42), then in fact η solves (1.41) so that ω+dη is harmonic indeed.

Remark 1.43. The argument above shows in fact that Im d and Im d∗ areL2-orthogonal subspaces
provided M is closed.

With these preliminary considerations at hand we proceed by showing that Theorem 1.38
has useful applications, in particular in the theory of Riemann surfaces.

1.5 Riemann surfaces
Definition 1.44. A Riemann surface Σ is a complex manifold of dimension one. In particular, Σ
admits an atlas {(Uα, ψα) | α ∈ A}, whereψα : Uα −→ C, such that each coordinate transformation
map

ψα ◦ ψ−1
β : C −→ C

is holomorphic on the domain of its definition.
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Writing zα = z = x+ iy = ψα, we obtain a holomorphic coordinate on Σ (defined on Uα).
Notice that

x = Re z and y = Im z

are real coordinates on Uα. In particular, for any p ∈ Uα we have a basis

∂α := (∂x, ∂y)
∣∣
p

of TpΣ. Define a linear map

Ip : TpΣ −→ TpΣ by Ip∂x = ∂y and Ip∂y = −∂x. (1.45)

Using the fact that ψα ◦ ψ−1
β is holomorphic, it is easy to check that Ip does not depend on

the choice of a holomorphic coordinate. It follows also from (1.45) that I2p = −id.
For any smooth (not necessarily holomorphic) function f : Σ −→ C define ∂f, ∂̄f ∈

Ω1 (Σ;C) by
∂f (v) := 1

2
(df (v)− i df (Iv))

∂̄f (v) := 1
2
(df (v) + i df (Iv))

for v ∈ TΣ.

In particular, we have df = ∂f + ∂̄f and f is holomorphic if and only if ∂̄f = 0. If
fα := f ◦ ψ−1

α : C −→ C is the local representation of f , then

∂̄fα =
∂fα
∂z̄

dz̄ and ∂fα =
∂fα
∂z

dz

are local representations of ∂̄f and ∂f respectively, that is ψ∗
α ∂̄fα = ∂̄f and ψ∗

α ∂fα = ∂f .
Furthermore, since

dz = dx+ i dy,
dz̄ = dx− i dy,

⇐⇒ dx = 1
2
(dz + dz̄) ,

dy = 1
2i
(dz − dz̄) ,

any ω ∈ Ω1 (Σ;C) can be written uniquely as ω = a dz + b dz̄ for some functions a and b.
Denote by Ω1,0 (Σ) the space of all those complex valued 1-forms, whose local representation
is a dz for some a ∈ C∞ (Σ;C). More invariantly, we have

Ω1,0 (Σ) =
{
ω ∈ Ω1 (Σ;C) | ω (I·) = i ω (·)

}
.

Similarly, denote by Ω0,1 (Σ) the space of all those 1-forms, whose local representation is
b dz̄ for some complex valued function b, or equivalently,

Ω0,1 (Σ) :=
{
ω ∈ Ω1 (Σ) | ω (I·) = −i ω (·)

}
.

Thus, we obtain the decomposition

Ω1 (Σ;C) = Ω1,0 (Σ) ⊕ Ω0,1 (Σ) .

Then ∂f and ∂̄f are nothing else but the components of df lying in Ω1,0 (Σ) and Ω0,1 (Σ)
respectively.

Thus, in the case of a Riemann surface, the complexified de Rham complex has the following
form:

Ω1,0 (Σ)

0 Ω0 (Σ;C) ⊕ Ω2 (Σ,C) 0

Ω0,1 (Σ)

∂̄

∂̄

∂

∂

(1.46)
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Here ∂̄ : Ω1,0 (Σ) → Ω2 (Σ;C) is just the restriction of d to Ω1,0 (Σ) and ∂ : Ω0,1 (Σ) →
Ω2 (Σ,C) is the restriction of d to Ω0,1 (Σ). Locally, we have

ω ∈ Ω1,0 (Σ) =⇒ ω = a dz =⇒ dω = da ∧ dz =
(
∂a

∂z
dz +

∂a

∂z̄
dz̄

)
∧ dz = −∂a

∂z̄
dz ∧ dz̄,

ω ∈ Ω0,1 (Σ) =⇒ ω = b dz̄ =⇒ dω = db ∧ dz̄ =
(
∂b

∂z
dz +

∂b

∂z̄
dz̄

)
∧ dz̄ = ∂b

∂z
dz ∧ dz̄.

Notice that we have
d2 = 0 ⇐⇒ ∂∂̄ + ∂̄∂ = 0.

The splitting (1.46) of the de Rham complex yields the Dolbeault cohomology groups:

H1,0 (Σ) := ker ∂̄,

H0 (Σ) := ker ∂̄, H1,1 (Σ) := Ω2
/
Im ∂̄,

H0,1 (Σ) := Ω0,1
/
Im ∂̄.

Clearly, H0 (Σ) is the space of holomorphic functions on Σ. In particular, if Σ is compact,
connected, and boundaryless, then H0 (Σ) ∼= C.

H1,0 (Σ) is the space of holomorphic differentials, that is 1-forms ω such that locally ω =
a dz and a is a holomorphic function. The geometric meaning of H0,1 (Σ) and H1,1 (Σ) is
somewhat less straightforward. An interested reader may wish to consult for example [Don11]
for further details.

1.6 The Laplacian on Riemann surfaces
A peculiar feature of Riemann surfaces is that the Laplace-Beltrami operator can be defined
without a reference to a Riemannian metric. Indeed, set

∆ := 2i ∂̄∂ = −2i ∂∂̄ : Ω0 (Σ;C) −→ Ω2 (Σ;C) .

If z = x+ iy is a local holomorphic coordinate as above, then we have

∂̄f =
∂f

∂z̄
dz̄ =

1

2
(∂xf + ∂yf i) dz̄ =⇒

∂∂̄f =
1

2

∂

∂z
(∂xf + ∂yf i) dz ∧ dz̄

=
1

4
(∂x − i ∂y) (∂xf + ∂yf i) dz ∧ dz̄

=
1

4

(
∂2xxf + ∂2yyf

)
dz ∧ dz̄.

Furthermore, since

dz ∧ dz̄ = (dx+ i dy) ∧ (dx− i dy) = −2i dx ∧ dy,

we obtain
∆f = −2i ∂∂̄f = −

(
∂2xxf + ∂2yyf

)
dx ∧ dy.
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Remark 1.47. To relate this operator to the Laplacian in the sense of (1.33), let g be a Hermitian
metric on Σ, that is g (I·, I·) = g (·, ·).

If z = x+ yi is a local holomorphic coordinate, then

(gij) =

(
λ 0
0 λ

)
=⇒

(
gij
)
=

(
λ−1 0
0 λ−1

)
for some positive function λ = λ (x, y).

Substituting this into (1.35), we obtain

∆f = −1

λ

(
∂x
(
λ · λ−1∂xf

)
+ ∂y

(
λ · λ−1∂yf

))
= −1

λ

(
∂2xxf + ∂2yyf

)
.

Furthermore, the Riemannian volume form on Σ in terms of local coordinates (x, y) is

vol = λ dx ∧ dy.

Hence, ∗ vol = 1 =⇒ ∗ (dx ∧ dy) = λ−1. This yields

∆f = −1

λ

(
∂2xxf + ∂2yyf

)
= ∗

(
−2i ∂∂̄f

)
.

Hence, up to the application of the isomorphism ∗ : Ω2 (Σ) → Ω0 (Σ), the Laplacian coincides
with −2i ∂∂̄ indeed.

In the current setting, Corollary 1.40 yields the following.

Theorem 1.48. Let Σ be a compact connected Riemann surface. The equation −2i ∂∂̄f = η,
where η ∈ Ω2 (Σ;C), has a solution if and only if

∫
Σ
η = 0. □

1.7 Some consequences of Theorem 1.48
In this section we assume that Σ is a compact connected Riemann surface throughout.

We have a natural skew-symmetric pairing

Ω1,0 (Σ)× Ω0,1 (Σ) −→ C, (ω, η) 7−→
∫
Σ

ω ∧ η.

This yields a bilinear map

B : H1,0 (Σ)×H0,1 (Σ) −→ C, B (ω, [η]) =

∫
Σ

ω ∧ η. (1.49)

Lemma 1.50. B is well defined.

Proof. Notice first that for any α, β ∈ Ω1,0 (Σ) we have α ∧ β = 0. Indeed, locally α = a · dz
and β = b · dz so that α ∧ β = ab dz ∧ dz = 0. Using this observation, we obtain∫

Σ

ω ∧
(
η + ∂̄f

)
=

∫
Σ

ω ∧ η +
∫
Σ

ω ∧
(
∂f + ∂̄f

)
=

∫
Σ

ω ∧ η +
∫
Σ

ω ∧ df

=

∫
Σ

ω ∧ η −
∫
Σ

d (f · ω) +
∫
Σ

fdω

=

∫
Σ

ω ∧ η − 0 + 0.
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In the last equality the second summand vanishes by the Stokes’ thm; The last summand
vanishes, since ω is closed: Locally ω = a (z) dz so that

dω = da ∧ dz =
(
∂a

∂z
dz +

∂a

∂z̄
dz̄

)
∧ dz = 0 + 0 = 0,

since a is a holomorphic. This finishes the proof of this lemma. □

Notice that we have a natural map

i : H1,0 (Σ) −→ H1 (Σ;C) , ω 7−→ [ω] .

The class [ω] is well-defined, since ω is closed as it has been shown in the proof Lemma 1.50.
Furthermore, the conjugation Ω1 (Σ;C) −→ Ω1 (Σ,C) , η 7−→ η̄, induces a map

σ : H1,0 (Σ) −→ H0,1 (Σ) ,

which is antilinear, that is σ (iη) = −iσ (η).

Theorem 1.51.
(i) σ is an isomorphism;

(ii) For a complex vector space V denote V ∗ = {ψ : V → C | ψ is antilinear}. ThenB : H1,0 (Σ) →
H0,1 (Σ)∗ is an isomorphism;

(iii) The map

H1,0 (Σ)⊕H0,1 (Σ) −→ H1 (Σ;C) , (ω, [η]) 7−→ i (ω) + i (σ−1 ([η])) (1.52)

is an isomorphism.

Proof. Notice that σ : H1,0 (Σ) −→ H0,1 (Σ) is well-defined. We want to show that for each
class [η] ∈ H0,1 (Σ) there exists a unique ω ∈ H1,0 (Σ) such that σ (ω) = [η]. Indeed, any
representative of [η] ∈ H0,1 (Σ) can be written as

η′ = η + ∂̄f

for some f ∈ C∞ (Σ;C). We want to find a representative η′ such that

∂η′ = 0 ⇐⇒ ∂∂̄f = −∂η. (1.53)

The equation on the right hand side of (1.53) has a solution, since∫
Σ

∂η =

∫
Σ

dη = 0.

In fact, f is defined uniquely by (1.53) up to the addition of a constant. Hence, for each class
[η] ∈ H0,1 (Σ) there exists a unique representative η′ such that ∂η′ = 0.

Define ω := η̄′. Then
∂̄ω = ∂̄η̄′ = ∂η′ = 0,

that is ω lies in H1,0 (Σ) and is a unique preimage of [η].
To prove (ii), we only need to show that (1.49) is non-degenerate, that is

∀ω ∈ H1,0 (Σ) ∃ [η] ∈ H0,1 (Σ) such that B (ω, [η]) ̸= 0.
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Indeed, for ω ∈ H1,0 (Σ) set η := σ (ω) = [ω̄]. Then

B (ω, [ω̄]) =

∫
Σ

ω ∧ ω̄ ̸= 0,

since a dz ∧ ā dz̄ = |a|2dz ∧ dz̄.
To prove the injectivity of (1.52), notice first that i is injective, since

B (i (ω) , σ (i (ω))) =

∫
Σ

ω ∧ ω̄ ̸= 0

provided ω ̸= 0.
Furthermore, denote ζ := i (σ−1 ([η])) and assume that ω + ζ̄ = df = ∂f + ∂̄f for some

function f , that is (ω, [η]) is in the kernel of (1.52). Since ω − ∂f ∈ Ω1,0(Σ) and ζ̄ − ∂̄f ∈
Ω0,1(Σ), we obtain

ω = ∂f and ζ = ∂f̄ .

Hence, ∂̄∂f = ∂̄ω = 0 and therefore f is constant, which yields ω = 0 and

ζ = i(σ−1([η])) = 0 ⇐⇒ [η] = 0,

since i is injective and σ is an isomorphism. Hence, (ω, [η]) = 0.
To see that (1.52) is surjective, pick any [ζ] ∈ H1

dR (Σ;C). I claim that there exists a
representative ζ ′ = ζ + df such that

∂̄ζ ′ = 0 ⇐⇒ 0 = ∂̄ζ + ∂̄df = ∂̄ζ − ∂∂̄f. (1.54)

The existence of a function f satisfying (1.54) follows from Theorem 1.48 just like in the proof
of (i).

Furthermore, write

ζ ′ = ω + η, where ω =
1

2
(ζ ′ − iζ ′ (I·)) and η =

1

2
(ζ ′ + iζ ′ (I·)) .

Locally, we have

ζ ′ = a dz + b dz̄ =⇒ ω = a dz and η = b dz̄.

Since ∂̄ζ ′ = 0, we obtain ∂a
∂z̄

= 0, that is ω is a holomorphic differential.
Furthermore,

∂̄ζ ′ = 0 and dζ ′ = 0 =⇒ ∂ζ ′ = 0 =⇒ ∂b

∂z
= 0 =⇒ ∂η = 0

=⇒ ∂̄η̄ = 0.

Hence, η̄ is also a holomorphic differential. Combining this with (i), we obtain (iii). □

Corollary 1.55. If b1 (Σ) = 0, then Σ admits a meromorphic function with a single simple pole.

Proof. Pick any point p ∈ Σ and a local holomorphic coordinate z centered at p. Let χ be a
bump function at p, that is χ ≡ 1 on a neighbourhood V of p and χ vanishes identically outside
of a slightly larger neighbourhood W ⊃ V .
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We wish to show that there exists a meromorphic function f on Σ with a unique simple pole
at p. Assume for a moment, however, that such f does exist and consider

h := f − χ
a

z
,

where a is the residue of f at p. Then h is smooth everywhere, albeit may fail to be holomorphic
on W\V . In any case, we have

∂̄h = ∂̄f − a

z
∂̄χ = −a

z
∂̄χ. (1.56)

Notice that η := −a
z
∂̄χ is a smooth (0, 1)-form supported in W\V .

Conversely, if h is a smooth solution of (1.56), we can define f by

f := h+ χ
a

z
,

which is meromorphic and has a unique simple pole at p.
Thus, our task reduced to showing that (1.56) has a solution. By the definition of H0,1 (Σ),

this is the case if and only if the class of η in H0,1 (Σ) vanishes. However, by (ii), we have

dimRH
1,0 (Σ) + dimRH

0,1 (Σ) = 2b1 (Σ) = 0 =⇒ H0,1 (Σ) = {0}

so that [η] vanishes trivially. This finishes the proof. □

Theorem 1.57. Let Σ be a closed Riemann surface. Then Σ is homeomorphic to CP 1 ∼= S2 if
and only if Σ is biholomorphic to CP 1.

Idea of the proof. By the classification theorem for closed surfaces, Σ is homeomorphic to S2

if and only if b1 (Σ) = 0. By Corollary 1.55, there exists a meromorphic function f on Σ with a
unique simple pole. We can view f as a holomorphic map f : Σ −→ CP 1. A simple topological
argument yields that f must be in fact bijective (this uses crucially that the pole of f is unique
and simple). The reader can find the details of this topological argument in [Don, Sec 4.1]. □

Another reformulation of the above theorem is that the sphere S2 admits a unique structure
of a complex manifold. This is in contrast with the torus T2 (or, in fact, any closed orientable
surface with b1 ≥ 2), which admits continuous families of inequivalent complex structures.

Developing these ideas somewhat further one can obtain also a classification of all elliptic
curves, that is Riemann surfaces homeomorphic to the torus. Or, one can show that any closed
Riemann surface can be embedded into some projective space. However, this goes somewhat
beyond the purposes of this course.
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Chapter 2

Vector bundles, Sobolev spaces, and
elliptic partial differential operators

2.1 Vector bundles
Basic definitions. Roughly speaking, a vector bundle is just a family of vector spaces parametrized
by points of a manifold (or, more generally, of a topological space).

More formally, the notion of a vector bundle is defined as follows.

Definition 2.1. Choose a non-negative integer k. A real smooth vector bundle of rank k is a
triple (π,E,M) such that the following holds:

(i) E and M are smooth manifolds, π : E → M is a smooth submersion (the differential is
surjective at each point);

(ii) For each m ∈ M the fiber Em := π−1(m) has the structure of a vector space and Em ∼=
Rk;

(iii) For each m ∈ M there is a neighborhood U ∋ m and a smooth map ψU such that the
following diagram

π−1(U) U × Rk

U

π

ψU

pr1

commutes. Moreover, ψU is a fiberwise linear isomorphism.

The following terminology is commonly used: E is the total space, M is the base, π is the
projection, and ψU is the local trivialization (over U ).

It is worth pointing out that one can equally well talk about complex and quaternionic vector
bundles. This requires only cosmetic changes, which are left to the reader. The preference for
real vector bundles in this section is given for the sake of definitness mainly. I shall feel free to
use complex vector bundles below without further explanations.

Example 2.2.

(a) The product bundle: M × Rk;
(b) The tangent bundle TM of any smooth manifold M .

17
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Let E and F be two vector bundles over a common base M . A homomorphism between E
and F is a smooth map φ : E → F such that the diagram

E F

M

πE

ϕ

πF

commutes and φ is a fiberwise linear map.
Two bundles E and F are said to be isomorphic, if there is a homomorphism φ, which is

fiberwise an isomorphism.
A bundle E is said to be trivial, if E is isomorphic to the product bundle.

Operations on vector bundles. Let E and F be two vector bundles over a common base M .
Then we can construct new bundles E∗, ΛpE, E ⊕ F, E ⊗ F, and Hom(E, F ) as follows:

(∗) (E∗)m = (Em)
∗;

(Λ) (ΛpE)m = Λp(Em);

(⊕) (E ⊕ F )m := Em ⊕ Fm;

(⊗) (E ⊗ F )m := Em ⊗ Fm;

(Hom) Hom(E, F )m := Hom(Em, Fm).

If f : M ′ →M is a smooth map, we can define the pull-back of E →M via

(f ∗E)m′ := Ef(m′).

For example, if M ′ is an open subset of M and ι is the inclusion, then E|M ′ := ι∗E is just the
restriction of E to M ′.

The reader should check that the families of vector spaces defined above satisfy the properties
required by Definition 2.1.

Exercise 2.3. Prove that E∗ ⊗ F is isomorphic to Hom(E,F ).

Exercise 2.4. Prove that the tangent bundle of the 2-sphere is non-trivial. (Hint: Apply the
hairy ball theorem).

Sections. Speaking informally, a section is an assignment of a vector s(m) ∈ Em to each
point m ∈M such that s(m) depends smoothly on m. More formally, we have the following.

Definition 2.5. A smooth map s : M → E is called a section, if π ◦ s = idM .

Sections of the tangent bundle TM are called vector fields. Sections of ΛpT ∗M are called
differential p-forms.

Exercise 2.6. Let E → M be a vector bundle of rank k and U ⊂ M be an open subset. Prove
that E is trivial over U if and only if there are k sections e = (e1, . . . , ek), ej ∈ Γ(U ; E),
such that e(m) is a basis of Em for each m ∈ U . More precisely, given e show that ψU can be
constructed according to the formula

ψ−1
U : U × Rk −→ E|U , (m,x) 7→ e(m) · x.

In fact this establishes a one-to-one correspondence between k-tuples of pointwise linearly
independent sections and local trivializations of E.
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We denote by Γ(E) = Γ(M ; E) the space of all smooth sections of E. Clearly, Γ(E) is a
vector space, where the addition and multiplication with a scalar are defined pointwise. In fact,
Γ(E) is a C∞(M)-module.

Given a local trivialization e over U (cf. Exercise 2.6) and a section s, we can write

s(m) =
k∑
j=1

σj(m)ej(m)

for some functions σj : U → R. Thus, locally any section of a vector bundle can be thought of
as a map σ : U → Rk.

It is important to notice that σ depends on the choice of a local trivialization. Indeed, if e′ is
another local trivialization of E over U ′, then there is a map

g : U ∩ U ′ −→ GLn(R) such that e = e′ · g. (2.7)

If σ′ : U ′ → Rk is a local representation of s with respect to e′, we have

s = e′σ′ = eg−1σ′ = eσ =⇒ σ′ = gσ.

Covariant derivatives. The reader surely knows from the basic analysis course that the notion
of the derivative is very useful. It is natural to ask whether there is a way to differentiate sections
of bundles too.

To answer this question, recall the definition of the derivative of a function f : M → R.
Namely, choose a smooth curve γ : (−ε, ε) → M and denote m := γ(0), v := γ̇(0) ∈ TmM .
Then

df(v) = lim
t→0

f(γ(t))− f(m)

t
. (2.8)

Trying to replace f by a section s of a vector bundle, we immediately run into a problem,
namely the difference s(γ(t)) − s(m) is ill-defined in general since these two vectors may lie
in different vector spaces.

Hence, instead of trying to mimic (2.8) we will define the derivatives of sections axiomatically,
namely asking that the most basic property of the derivative—the Leibnitz rule—holds.

Definition 2.9. Let E → M be a vector bundle. A covariant derivative is an R-linear map
∇ : Γ(E) → Γ(T ∗M ⊗ E) such that

∇(fs) = df ⊗ s+ f∇s (2.10)

holds for all f ∈ C∞(M) and all s ∈ Γ(E).

Example 2.11. Let M ⊂ RN be an embedded submanifold. Then the tangent bundle TM is
naturally a subbundle of the product bundle RN := M × RN . In particular, any section s of
TM can be regarded as a map M → RN . With this at hand we can define a connection on TM
as follows

∇s := pr(ds),

where pr is the orthogonal projection onto TM . A straightforward computation shows that this
satisfies the Leibniz rule, i.e., ∇ is a connection indeed.

Theorem 2.12. For any vector bundle E → M the space of all connections A(E) is an affine
space modelled on Ω1(EndE) = Γ

(
T ∗M ⊗ End(E)

)
.
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To be somewhat more concrete, the above theorem consists of the following statements:

(a) A(E) is non-empty.
(b) For any two connections ∇ and ∇̂ the difference ∇−∇̂ is a 1-form with values in End(E);
(c) For any ∇ ∈ A(E) and any a ∈ Ω1(EndE) the following

(∇+ a)s := ∇s+ as

is a connection.

For the proof of Theorem 2.12 we need the following elementary lemma, whose proof is
left as an exercise.

Lemma 2.13. Let A : Γ(E) → Ωp(F ) be an R-linear map, which is also C∞(M)-linear, i.e.,

A(fs) = fA(s) ∀f ∈ C∞(M) and ∀s ∈ Γ(E).

Then there exists a ∈ Ωp
(
Hom(E,F )

)
such that A(s) = a · s. □

Proof of Theorem 2.12. Notice first that A(E) is convex, i.e., for any ∇, ∇̂ ∈ A(E) and any
t ∈ [0, 1] the combination t∇+ (1− t)∇̂ is also a connection.

If ψU is a local trivialization of E over U , then we can define a connection ∇U on E|U by
declaring

∇Us := ψ−1
U d(ψU(s)).

Using a partition of unity and the convexity property, a collection of these local covariant
derivatives can be sewed into a global covariant derivative just like in the proof of the existence
of Riemannian metrics on manifolds, cf. [BT03, Thm. 3.3.7]. This proves (a).

By (2.10), the difference ∇− ∇̂ is C∞(M)–linear. Hence, (b) follows by Lemma 2.13.

The remaining step, namely (c), is straightforward. This finishes the proof of this theorem.
□

While Theorem 2.12 answers the question of the existence of connections, the reader may
wish to have a more direct way to put his hands on a connection. One way to do this is as
follows.

Let e be a local trivialization. Since e is a pointwise base we can write

∇e = e · A, (2.14)

where A = A(∇, e) is a k × k-matrix, whose entries are 1-forms defined on U . A is called the
connection matrix of ∇ with respect to e.

If σ is a local representation of a section s, then

∇s = ∇(eσ) = ∇(e)σ + e⊗ dσ = e
(
Aσ + dσ

)
.

Hence, it is common to say that locally

∇ = d+ A,

which means that dσ + Aσ is a local representation of ∇s. In particular, ∇ is uniquely
determined by its connection matrix.
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2.2 Sobolev spaces

2.2.1 Sobolev spaces on Rn

Recall that the space of square-integrable functions is defined by

L2 (Rn) :=
{
u : Rn → C | u is measurable &

∫
Rn

|u (x) |2dx <∞
}
.

This is a (complex) Hilbert space with respect to the Hermitian scalar product

⟨u, v⟩L2 :=

∫
Rn

u (x) v̄ (x) dx.

Remark 2.15. Strictly speaking, we should also identify those functions, which differ only on a
subset of measure zero so that L2 (Rn) consists of classes of functions. However, this will not
be an issue for us and we shall treat square-integrable functions as honest functions.

The Fourier transform

For f : Rn → C decaying sufficiently fast at ∞ the Fourier transform f̂ : Rn → C is defined by

f̂ (ξ) :=
1

(2π)n

∫
Rn

f (x) e−i⟨x,ξ⟩dx.

The Plancherel theorem states that

∥f̂∥2L2 =
1

(2π)n
∥f∥2L2 , (2.16)

that is (an extension of) the map f 7→ f̂ is essentially an isometry of L2 (Rn).
Let α = (α1, . . . , αn) ∈ Zn≥0 be a multi-index. Denote

Dαf :=

(
1

i

)|α|
∂|α|f

∂xα1
1 · · · ∂xαn

n

,

where |α| = α1 + . . .+ αn. The basic property of the Fourier transform is

D̂αf (ξ) = ξαf̂ (ξ) , (2.17)

where ξα = ξα1
1 . . . ξαn

n .
Another basic property of the Fourier transform is the following.

Lemma 2.18 (Riemann-Lebesgue). If u ∈ L1(Rn), then û ∈ C0(Rn) and û decays at ∞. □

Denote by f∨ (ξ) = (2π)n f̂ (−ξ) =
∫
f (x) ei⟨x,ξ⟩dx.

Theorem 2.19 (The Fourier inversion theorem). If f ∈ L1 (Rn) and f̂ ∈ L1 (Rn), then f agrees

almost everywhere with a continuous function f0 and
(
f̂
)∨

= f0 =
(
f̂∨
)

. □
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Sobolev spaces

Let u ∈ L2 (Rn). For α ∈ Zn≥0, we say that v ∈ L1
loc (Rn) is the αth-weak derivative if∫

Rn

u
∂|α|ψ

∂xα1
1 . . . ∂xαn

n

= (−1)|α|
∫
Rn

v · ψ

holds for all test functions ψ contained in

C∞
0 (Rn) := {ψ ∈ C∞ (Rn) | supp ψ is compact} .

The αth weak derivative does not need to exist in general, however if it does exist we simply
write

v =
∂|α|u

∂xα1
1 . . . ∂xαn

n

keeping in mind that the above equality holds in the weak sense.
With this understood, given any integer k ≥ 0 we can define

Hk (Rn) =

{
u ∈ L2 (Rn) | ∂|α|u

∂xα1
1 . . . ∂xαn

n

exists and belongs to L2 (Rn) ∀α s.t. |α| ≤ k

}
.

Somewhat less formally, this is expressed as follows:

u ∈ Hk (Rn) iff ∥u∥2Hk :=
∑
|α|≤k

∥Dαu∥2L2 <∞. (2.20)

Properties (2.16) and (2.17) imply that u ∈ Hk (Rn) if and only if (1 + |ξ|2)
k
2 û (ξ) ∈ L2 (Rn) .

Hence, we can equally well define Hk (Rn) by

Hk (Rn) :=

{
u | ∥u∥2Hk :=

∫
Rn

(
1 + |ξ|2

)k |û (ξ) |2dξ <∞
}
.

Moreover, the norm appearing in the above definition is equivalent to (2.20). The advantage of
the above definition is that this makes sense for any k ∈ R, not just non-negative integers.

The following are basic results about Sobolev spaces.

Proposition 2.21. Assume u ∈ Hk (Rn), where κ := k − n
2
> l ∈ N0. Then u ∈ C l (Rn) after

changing u on a subset of measure zero if necessary. Moreover, the natural inclusion

Hk (Rn) −→ C l (Rn)

is bounded, that is ∥u∥Cl ≤ C∥u∥Hk for some positive constant C independent of u.

Proof. Using (2.17) we obtain∫
|D̂αu| (ξ) dξ =

∫
|ξα||û (ξ) |dξ ≤

∫ (
1 + |ξ|2

) |α|
2 |û (ξ) |dξ

≤
∫ (

1 + |ξ|2
) l

2 |û (ξ) |dξ,

provided |α| ≤ l.
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Furthermore, by the Cauchy-Schwartz inequality we have∫ (
1 + |ξ|2

) l
2 |û (ξ) |dξ =

∫ (
1 + |ξ|2

) k
2 |û (ξ) | ·

(
1 + |ξ|2

) l−k
2 dξ

≤
(∫ (

1 + |ξ|2
)k |û (ξ) |2dξ) 1

2
(∫ (

1 + |ξ|2
)l−k

dξ

) 1
2

The last integral converges since |ξ|2(l−k) · |ξ|n−1 = |ξ|β, where β = 2 (l − k) + n − 1 <
−n+ n− 1 = −1. Hence, we obtain∫

|D̂αu| (ξ) dξ ≤ C∥u∥Hk .

Hence, Dαu ∈ C0 by a combination of the Riemann-Lebesgue lemma and the Fourier inversion
theorem.

Moreover,
∥Dαu∥C0 ≤ ∥D̂αu∥L1 ≤ C∥u∥Hk ,

which finishes the proof. □

Proposition 2.22 (Rellich). Suppose uj ∈ Hk (Rn) is a sequence such that there exists a
compact subset K ⊂ Rn containing suppuj for all j. If ∥uj∥Hk is bounded, then for any
s < k there is a subsequence ujl , which converges in Hk (Rn). □

2.2.2 Sobolev spaces on manifolds
In the case when the base is a closed oriented Riemannian manifold M rather than Rn, the
definition of the L2-spaces generalizes in a straightforward manner. Namely,

L2 (M) :=

{
u : M → R | ∥u∥L2 :=

(∫
M

|u|2vol
) 1

2

<∞
}
.

Let E be an Euclidean vector bundle over a manifold M . That means that each fiber Em is
equipped with a scalar product ⟨·, ·⟩m and this scalar product depends smoothly on m. More
formally, just like in Definition 1.18, an Euclidean structure on E is a smooth section ⟨·, ·⟩ of
E∗ ⊗ E∗ such that

⟨v, w⟩ = ⟨w, v⟩ and ⟨v, v⟩ > 0

holds for all v, w ∈ Em and all m ∈M ; In addition, in the last inequality we assume v ̸= 0.
In any case, the definition of the L2-spaces for sections of Euclidean bundles generalizes in

a straightforward manner. Namely, if M is a compact oriented Riemannian manifold, then

L2 (E) :=

{
s | ∥s∥L2 :=

(∫
M

|s|2 vol
) 1

2

<∞
}
.

Furthermore, pick a connection ∇ ∈ A (E). It is convinient to assume that ∇ is Euclidean, that
is

d⟨s1, s2⟩ = ⟨∇s1, s2⟩+ ⟨s1,∇s2⟩
holds for all smooth sections s1 and s2 of E.
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Remark 2.23. Any Euclidean vector bundle admits an Euclidean connection. Moreover, the
space of all Euclidean connections on E is an affine space modeled on

Ω1 (M ; o (E)) := Γ (T ∗M ⊗ o (E)) , where o (E) := {A ∈ End (E) | A∗ = −A} .
These facts can be established by a straightforward modification of the proof of Theorem 2.12.

We can define

H1 (E) :=
{
s | ∥s∥H1 :=

(
∥s∥2L2 + ∥∇s∥2L2

) 1
2 <∞

}
.

Remark 2.24. If s is smooth, then ∇s is a 1-form with values in E. Then

|∇s|2m :=
n∑
i=1

|∇eis|2,

where (e1, . . . , en) is an orthonormal basis of TmM . Thus, somewhat more precisely by ∥∇s∥L2

we mean

∥∇s∥L2 =

(∫
M

|∇s|2m volm

) 1
2

.

Just like in the case of Rn, H1(E) can be understood in at least two following ways. First,
we can define H1 (E) as the completion of Γ (E) with respect to the ∥ · ∥H1-norm. Secondly,
for s ∈ L2 (E) we can first define the weak covariant derivative ∇s as a functional acting on
Ω1 (E) and ask ∇s to lie in L2(T ∗M ⊗ E).

To describe some details concerning the second approach, notice that akin to the de Rham
complex for any connection ∇ we have the sequence

0 → Ω0(E) = Γ(E)
∇=d∇−−−−→ Ω1(E)

d∇−−→ . . .
d∇−−→ Ωn(E) → 0, (2.25)

where for ω ⊗ s ∈ Ωk(E) the map d∇ is defined by

d∇ (ω ⊗ s) = (dω)⊗ s+ (−1)kω ∧∇s.
Notice, however, that (2.25) is not a complex in general, that is d∇ ◦ d∇ does not necessarily
vanish.

In any case, just like for the de Rham differential we can also define

d∗∇ : Ωk+1(E) → Ωk(E) by d∗∇ := (−1)nk+1 ∗ d∇ ∗,
cf. Proposition 1.24. Here the Hodge operator acts as follows: ∗(ω⊗ s) = (∗ω)⊗ s. Assuming
∇ is Euclidean, d∗∇ is the formal adjoint of d∇, that is

⟨d∇α, β⟩L2 = ⟨α, d∗∇β⟩L2

holds for all α ∈ Ωk(E) and all β ∈ Ωk+1(E).

With these preliminaries at hand, if s ∈ L2(E) the value of the weak derivative ∇s on
ψ ∈ Ω1(E), which has a compact support, is declared to be

⟨∇s, ψ⟩ := ⟨s, d∗∇ψ⟩L2 .

Then we can defineH1 (E) as a subspace ofL2 (E) consisting of those s, whose weak derivative
belongs to L2, that is if there exists w ∈ L2 (T ∗M ⊗ E) such that

⟨w,ψ⟩L2 = ⟨s, d∗∇ψ⟩L2

holds for any ψ ∈ Γ (E). Of course, in this case we must have w = ∇s.
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Our definition of H1 (E) depends a priory on the choice of the connection ∇. It turns out
that this dependence is not really essential as the following result shows.

Proposition 2.26. Pick any two Euclidean connections ∇ and ∇′ on E. If M is compact, then
the corresponding norms ∥ · ∥H1 and ∥ · ∥′H1 are equivalent.

Proof. By Theorem 2.12, we have ∇′ = ∇+a, where a ∈ Ω1 (End (E)) (in fact a takes values
in o (E), but this is immaterial here). Denote

A := sup
m∈M

|am| = sup
m∈M

sup
v∈TmM
|v|=1

|am (v) | <∞.

Then for any v ∈ TmM of unit norm and any smooth section s we have

∇′
vs = ∇vs+ a (v) · s =⇒ |∇′

vs| ≤ |∇vs|+ A|s|.

Hence, for any orthonormal basis (e1, . . . , en) of TmM we obtain

|∇′s|2m =
n∑
i=1

|∇′
ei
s|2 ≤

n∑
i=1

(|∇eis|+ A|s|)2 ≤ 2

(
n∑
i=1

|∇eis|2 + nA2|s|2
)

= 2|∇s|2m + 2nA2|s|2.
(2.27)

Here to obtain the second inequality we used the mean inequality

a+ b

2
≤
(
a2 + b2

2

) 1
2

,

where a and b are positive real numbers.
With the help of (2.27) we obtain

∥∇′s∥L2 ≤ C1∥∇s∥L2 + C2∥s∥L2

for some positive constantsC1 andC2 independent of s. This yields the claim of this proposition.
□

Our next aim is to define the Sobolev spaces Hk (E) with k ≥ 1 being an integer. To this
end notice first the following.

Lemma 2.28.
(i) If ∇ is a connection on a vector bundle E, then there exists a unique connection ∇∗ on

E∗ such that
d⟨σ, s⟩ = ⟨∇∗σ, s⟩+ ⟨σ,∇s⟩ (2.29)

holds for all σ ∈ Γ (E∗) and all s ∈ Γ (E). Here ⟨·, ·⟩ denotes the natural pointwise
pairing E∗ ⊗ E → R.

(ii) If ∇E and ∇F are connections on vector bundles E and F respectively, then there exists
a unique connection ∇ on E ⊗ F such that

∇ (s⊗ t) = ∇Es⊗ t+ s⊗∇F t (2.30)

holds for all s ∈ Γ (E) and all t ∈ Γ (F ).
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The proof of this lemma can be obtained by a straightforward verification that ∇∗ and ∇
defined by (2.29) and (2.30) respectively satisfies the Leibnitz rule. I leave this as an exercise
to the reader.

With this understood, we can proceed as follows. Pick an Euclidean connection ∇E on E
and an Euclidean connection ∇TM on TM . This yields a connection ∇ = ∇

(
∇E,∇TM

)
on

T ∗M ⊗ E. Hence, for any smooth section s of E we can define the second derivative by

∇2s = ∇
(
∇Es

)
∈ Γ (T ∗M ⊗ T ∗M ⊗ E) .

In a less regular case, for example when s ∈ H1 (E) we can still define the weak second
derivative as a functional on Γ (T ∗M ⊗ T ∗M ⊗ E) just like we defined the weak first derivative.
Then we may set

H2 (E) =
{
s ∈ H1 (E) | ∇2s ∈ L2 (E)

}
,

=
{
s | ∥s∥pH2 := ∥s∥2L2 + ∥∇s∥2L2 + ∥∇2s∥2L2 <∞

}
,

where the second equality should be treated with care just like in the case of functions.
Furthermore, we can define Hk (E) for any integer k ≥ 2 by induction. The details are left

to the reader.
Alternatively, we can also define Hk (E) as the closure of Γ (E) with respect to ∥ · ∥Hk ,

where

∥s∥2Hk :=
k∑
j=0

∥∇js∥2L2 . (2.31)

Yet another way to define Sobolev spaces, which works for any real k, is as follows. Since
M is compact, we can pick a finite covering (Uα, ψα), where ψα is a trivialization of E

∣∣
Uα

just
like in Definition 2.1. Moreover, we can assume that each Uα is a coordinate chart. Let {ρα} be
a partition of unity subordinate to {Uα}, that is

• supp ρα ⊂ Uα;

• ρα ≥ 0 everywhere;

•
∑

α ρα (m) = 1 for each m ∈M .

If s is a section of E, over each Uα we can identify s with some sα : Uα → Rl, where l is the
rank of E, as follows:

ψα ◦ s = (id, sα) .

Hence, we can think of ρα · sα as a map defined on Rn with compact support. Finally, we set

∥s∥2Hk :=
∑
α

∥ρα · sα∥2Hk .

This norm depends on the choice of {(Uα, ψα, ρα)}, however turns out to be equivalent to (2.31)
if k is an integer. Hence, we can define Hk (E) in the usual way, for example as the completion
of Γ (E) with respect to the above norm.

With this understood, we have the sequence of inclusions

L2(M ; E) = H0(M ; E) ⊃ H1(M ; E) ⊃ H2(M ; E) ⊃ . . .

Relations between all these spaces is given by the following theorem, which is of fundamental
importance in the theory of PDEs.
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Theorem 2.32. Let M be a compact manifold.

(i) The natural inclusion
j : Hk(M ; E) ⊂ H l(M ; E)

is a compact operator provided k > l. This means that if k > l any sequence bounded in
Hk has a subsequence, which converges in H l.

(ii) We have a natural continuous embedding

Hk(M ; E) ⊂ C l(M ; E)

provided k − n
2
> l. In particular, if s ∈ Hk(M ; E) for all k ≥ 0, then s ∈ C∞(M ; E).

2.3 Differential operators
Let E be a smooth complex vector bundle of rank a over M. This means that each fiber Em
has the structure of a complex vector space and its dimension equals a; Also, Property (iii) of
Definition 2.1 should be read as follows: For each m ∈M there exists a neighbourhood U ∋ m
and a smooth map ψU show that the following diagram

π−1 (U) U × Ca

U

ψU

π
pr2

commutes. Moreover, ψU is a fiberwise complex linear isomorphism.
Given a local trivialization ψU as above, any section s ∈ Γ (E) can be identified with a

smooth map σ : U → Ca in the following sense:

ψU ◦ s = (idU , σ) .

In other words, we have a well-defined C∞ (M ;C)-linear isomorphism

ΨU : Γ
(
E
∣∣
U

)
−→ C∞ (U ;Ca) .

LetF be another complex vector bundle overM of rank b. ThenF admits a local trivialization
over some neighbourhood U ′ of M . Replacing U and U ′ by U ∩U ′ if necessary, we can assume
U ′ = U . Notice also that by shrinking U further if necessary, we can assume that U is a chart.
Denote by (x1, . . . , xn) local coordinates on U . Let ψFU be the trivialization of F over U so that
sections of F over U can be thought of as maps U −→ Cb.

Definition 2.33. A C-linear map L : Γ (E) → Γ (F ) is called a differential operator of order
at most l, if for each choice of local trivializations of E and F as above there is a differential
operator L̃ : C∞ (U ;Ca) → C∞ (U ;Cb

)
of order at most l such that the following diagram

Γ
(
E
∣∣
U

)
Γ
(
F
∣∣
U

)
C∞ (U ;Ca) C∞ (U ;Cb

)
L

ΨU ΨF
U

L̃
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commutes. Here L̃ is said to be a differential operator of order at most l, if L̃ admits a
representation

L̃σ =
∑
|α|≤l

aα (x)
∂|α|σ

∂xα1
1 . . . ∂xαn

n

, (2.34)

where aα ∈ C∞ (U ;Ma×b (C)) and Ma×b (C) denotes the space of all a × b-matrices with
complex entries.

Remark 2.35. We can equally well define real differential operators acting on sections of real
vector bundles. This requires cosmetic changes only. The choice to focus on complex differential
operators will be somewhat clearer below.

Example 2.36. Let M be any manifold of dimension n. Recall that any chart (U, x1, . . . xn)
yields a trivialization of T ∗M . The corresponding map ΨU : Ω

1 (U) → C∞ (U ;Rn) is given by

ω =
n∑
i=1

ωi (x) dxi 7−→

 ω1
...
ωn

 .

Consider the differential as the map d : Ω0 (M) = Γ (R) → Ω1 (M). Since R is globally trivial,
there is no need to choose an extra local trivialization of R. Then, relative to the above choice
of the local trivialization of T ∗M , the local representation of d is given by

f 7−→


∂f
∂x1...
∂f
∂xn

 =


1
0
...
0

 · ∂f
∂x1

+ . . .+


0
0
...
1

 · ∂f
∂xn

.

In particular, d is a first order (real) differential operator.
By the same token, d : Ωk (M) → Ωk+1 (M) is a first order real differential operator for

each k.

Let Diff l (E,F ) denote the vector space of all differential operators of order at most l.

Proposition 2.37. Any L ∈ Diff l (E,F ) extends as a bounded map L : Hk (E) → Hk−l (F ).

The proof of this proposition follows immediately from the property D̂αf (ξ) = ξαf̂ (ξ)
and the definition of Hk-norm in terms of the Fourier transform.

2.3.1 Symbols of differential operators
Consider the following second order differential operator

Lu =
n∑

i,j=1

aij (x)
∂2u

∂xi∂xj
+

n∑
i=1

bi (x)
∂u

∂xi
+ c (x)u, (2.38)

where u is a function of n variables (x1, . . . , xn). It is well-known from the theory of linear
PDEs that in many cases the most essential properties of L depend on the highest order terms
only, that is on

L(2)u =
n∑

i,j=1

aij (x)
∂2u

∂xi∂xj
.
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It is convenient to represent this operator by the expression

σ (L) := −
n∑

i,j=1

aij (x) ξiξj,

where ξ = (ξ1, . . . , ξn) can be understood as a formal variable and the negative sign is a
convention. This leads to the notion of the symbol of a differential operator.

It is important to understand how the symbol changes if we change the variables, since on a
manifold there are no preferred coordinates in general. Thus, let

y1 = y1 (x1, . . . , xn)

. . .

yn = yn (x1, . . . , xn)

be new coordinates on Rn. If u (x) = v (y (x)), then we have

∂u

∂xi
=

n∑
p=1

∂v

∂yp

∂yp
∂xi

=⇒ ∂2u

∂xi∂xj
=

n∑
p,q=1

∂2v

∂yp∂yq

∂yp
∂xi

∂yq
∂xj

+
n∑
p=1

∂v

∂yp

∂2yp
∂xi∂xj

.

Substituting this into (2.38) we obtain

Lu =
n∑

i,j,p,q=1

aij
∂yp
∂xi

∂yq
∂xj

∂2v

∂yp∂yq
+ . . . =: L̃v

where ". . ." denotes the lower order terms. Therefore, the symbol of L̃ is given by

σ
(
L̃
)
(η) = −

n∑
p,q=1

(
n∑

i,j=1

aij
∂yp
∂xi

∂yq
∂xj

)
ηpηq.

Hence, if we set

ξi =
n∑
p=1

∂yp
∂xi

ηp =⇒ ξj =
n∑
q=1

∂yq
∂xj

ηq,

then
σ(L̃) (η) = σ(L) (ξ) ⇐⇒ σ(L̃) (η) = σ

(
L
)
(Jη)

holds identically for all η ∈ Rn, where

J =


∂y1
∂x1

∂y2
∂x1

. . . ∂yn
∂x1

∂y1
∂x2

∂y2
∂x2

. . . ∂yn
∂x2

. . . . . . . . . . . .
∂y1
∂xn

∂y2
∂xn

... ∂yn
∂xn

 =

(
∂y

∂x

)t
.

This implies the following. Think of (x, ξ) as coordinates on T ∗Rn ∼= Rn × Rn. If we change
the coordinates x on Rn for y as above, we obtain new coordinates (y, η) on T ∗Rn. Moreover,
these coordinates are related by

y = y (x) and ξ =

(
∂y

∂x

)t
· η.

Draft 29 May 4, 2024



Global analysis

Hence σ
(
L̃
)
(η) = σ

(
L̃
)
(y, η) is just the expression for σ (L) in these new coordinates. Put

differently, σ (L) (ξ) = σ (L) (x, ξ) is well-defined as a function on T ∗Rn.
Notice that σ (L) (ξ) is homogeneous of degree 2 in ξ, that is

σ (L) (λξ) = λ2σ (L) (ξ)

for all λ ∈ R.
In general, we can proceed as follows. For vector bundles E and F as above, consider

π∗E −→ T ∗M and π∗F −→ T ∗M , where π : T ∗M −→ M is the cotangent bundle. For any
l ∈ Z set

Smbl (E;F ) :=
{
σ ∈ Γ (Hom (π∗E, π∗F )) | σ (m,λξ) = λlσ (m, ξ)

}
, (2.39)

where λ > 0 and (m, ξ) ∈ T ∗M .
For any linear differential operator L : Γ (E) −→ Γ (F ) of order at most l as above, its

symbol σ (L) is an element of Smbl (E;F ). This can be defined via the local representations
of L just like we did above in the case of the second order operators acting on functions. To be
more precise, if L̃ is a local representation of L just like in (2.34), define

σ
(
L̃
)
(x, ξ) := il

∑
|α|=l

aα (x) ξ
α ∈Ma×b (C) .

This yields a map
π−1 (U) = U × Rn −→Ma×b (C) ,

where U ⊂ M is as in Definition 2.33. A computation similar to the one we did above shows
that σ

(
L̃
)

is a local representation of a well-defined section σ (L) of Smbl (E;F ).
Alternatively, somewhat more invariantly, one can also define the symbol as follows. Given

(m, ξ) ∈ T ∗M and e ∈ Em, pick f ∈ C∞ (M) and s ∈ Γ (E) such that f (m) = 0, dfm = ξ,
and s (m) = e. Define

σ (L) (m, ξ) e := L

(
il

l!
f ls

) ∣∣∣∣
m

∈ Fm

It is then easy to check that this is equivalent to our definition of the symbol in terms of local
representations of L.

Denote by Diff l (E;F ) the vector space of all linear differential operators L : Γ (E) →
Γ (F ) of order at most l. Thus, we obtain a linear map σ : Diff l (E;F ) → Smbl (E;F ), which
has the following properties.

Proposition 2.40.

(i) For any l ∈ Z, l ≥ 1, the sequence

0 −→ Diff l−1 (E,F ) −→ Diff l (E,F ) −→ Smbl (E;F )

is exact.

(ii) σ (L1 ◦ L2) = σ (L1) ◦ σ (L2). □

Example 2.41. Recall that in local coordinates the Laplacian (acting on functions) is given by

∆f = − 1√
|g|
∂i

(√
|g|gij∂jf

)
.

Hence, for the symbol we have

σ (∆) (ξ) = +
1√
|g|
ξi

(√
|g|gijξj

)
= gijξiξj = |ξ|2.
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Example 2.42. Consider d : Ωp (M) −→ Ωp+1 (M), which is clearly the first order linear
differential operator. Pick a point m ∈ M and a function f ∈ C∞ (M) such that f (m) = 0.
We have

d (fω)
∣∣
m
= df ∧ ω

∣∣
m
+ 0 · dω

∣∣
m
= df ∧ ω

∣∣
m
.

Hence, σ (d) (m, ξ) (α) = iξ ∧ α.

2.3.2 The formal adjoint of a linear differential operator and its symbol
An important role in what follows is played by the adjoint of a differential operator. We first
prove an auxiliary result, which will be useful below, define the (formal) adjoint operator, and
prove its existence afterwards.

LetE be Hermitian vector bundle. The Hermitian structure is defined just like the Euclidean
one, namely as a family of Hermitian scalar products (·, ·)m on each fiber depending smoothly
on m.

Lemma 2.43. For any non-negative k ∈ R, we have
(
Hk (M ;E)

)∗ ∼= H−k (M ;E). In
particular, the natural semilinear map

s, t 7−→ (s, t)L2 , s, t ∈ C∞ (M ;E)

extends to the semilinear map

Hk (M ;E)×H−k (M ;E) −→ C

such that | (s, t) | ≤ C∥s∥Hk∥t∥H−k .

Idea of the proof. The proof boils down to showing that for any u, v ∈ C∞
0 (Rn;C) we have∣∣∣∣ ∫

Rn

u (x) v̄ (x) dx

∣∣∣∣ ≤ C∥u∥Hk∥v∥H−k .

To see that this inequality holds indeed, notice that the Plancherel theorem yields∣∣∣∣ ∫
Rn

u (x) v̄ (x) dx

∣∣∣∣ = (2π)n
∣∣∣∣ ∫

Rn

û (ξ) v̂ (ξ)dξ

∣∣∣∣
≤ (2π)n

∫
Rn

|û (ξ) |
(
1 + |ξ|2

) k
2 |v̂ (ξ) |

(
1 + |ξ|2

)− k
2 dξ

≤ (2π)n
(∫

Rn

|û (ξ) |2
(
1 + |ξ|2

)k
dξ

) 1
2
(∫

Rn

|v̂ (ξ) |2
(
1 + |ξ|2

)−k) 1
2

= (2π)n ∥u∥Hk · ∥v∥H−k ,

where the last inequality follows from the Cauchy–Schwartz inequality. □

Let F be another Hermitian bundle. Slightly abusing notations, we denote the Hermitian
structure of F still by (·, ·).
Definition 2.44. LetL : Γ (E) → Γ (F ) be a C-linear map. A C-linear mapL∗ : Γ (F ) → Γ (E)
is called the formal adjoint of L, if

(Ls, t)L2 = (s, L∗t)L2 =

∫
M

(s, L∗t)m volm

holds for all s ∈ Γ (E) and all t ∈ Γ (F ).
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Proposition 2.45. IfL ∈ Diff l (E;F ), thenL∗ exists and is unique. Moreover, L∗ ∈ Diff l (F ;E)
and σ (L∗) = σ (L)∗, where σ (L)∗ denotes the pointwise Hermitian-dual map.

Proof. The proof consists of the following steps.

Step 1. The formal adjoint operator is unique.

Indeed, if L∗
1 and L∗

2 are two formal adjoint operators, then for all s, t as in the definition we
have

0 = (s, (L∗
1 − L∗

2) t)L2 =⇒ L∗
1 = L∗

2.

Step 2. L∗ exists.

For each t ∈ C∞ (F ) consider the functional

s 7−→ ψt (s) = (Ls, t)L2 .

Since
|ψt (s) | ≤ ∥Ls∥H−k∥t∥Hk ≤ C∥t∥Hk∥s∥Hl−k , (2.46)

ψt can be viewed as a bounded functional on H l−k. Hence, by the Riesz representation theorem
there exists a unique u = u (t) ∈ Hk−l such that ψt (s) = (s, u (t)).

Since ψt depends semilinearly on t, the map t 7−→ u (t) is C-linear. Moreover,

∥ψt∥Hl−k = sup
s ̸=0

|ψt (s) |
∥s∥Hl−k

≤ C ∥u (t) ∥Hk−l . (2.47)

In fact, ∥ψt∥ = C ∥u (t) ∥Hk−l , since1, roughly speaking, (2.47) follows from the Cauchy–
Schwartz inequality, which is optimal.

We set L∗t := u (t). Then by (2.46) we obtain

∥L∗t∥Hk−l = ∥u (t) ∥Hk−l ≤ C∥t∥Hk

for any k ∈ R. In particular, L∗ yields a bounded map Hk → Hk−l. If t ∈ C∞, then L∗t does
not depend on k and belongs to Hk−l for any k ∈ R. Hence, L∗ : C∞ (F ) → C∞ (E).

Step 3. Let L̃ : C∞ (Rn;Ca) → C∞ (Rn;Cb
)

be a linear differential operator of order l. Define
the weighted Hermitian L2-scalar product on C∞

0 (Rn;Ca) by

(s, σ)L2, ρ :=

∫
Rn

(s (x) , σ (x)) ρ (x) dx,

where ρ is a positive smooth function. Then L̃∗ defined by(
L̃s, t

)
L2, ρ

=
(
s, L̃∗t

)
L2, ρ

∀s ∈ C∞
0 (Rn;Ca) and ∀t ∈ C∞

0

(
Rn;Cb

)
is also a linear differential operator of order l. Moreover, σ

(
L̃∗) = σ

(
L̃
)∗.

1A proper justification of this equality requires an extra argument, which I omit here.
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Write L̃ =
∑

|α|≤l aα (x)D
α and consider the term corresponding to α = (1, 0, . . . , 0). We

have
(aαD

αs, t)L2, ρ =

∫
Rn

(aαD
αs)tr t̄ ρ dx = −i

∫
Rn

(∂1s)
tr atrα t̄ ρ dx

= −i
∫
Rn

(
∂1
(
stratrα t̄ ρ

)
− str∂1

(
atrα t̄ ρ

))
dx

= 0 + i

∫
Rn

stratrα
(
∂1t
)
ρ dx+ i

∫
Rn

str∂1
(
atrα ρ

)
t̄ dx

=

∫
Rn

str
(
a∗αDαt

)
ρ dx−

∫
Rn

str bαt ρ dx,

where bα = − i
ρ
∂1 (a

∗
αρ) and a∗α = (ā)tr denotes the Hermitian dual matrix. In other words,

for α = (1, 0, . . . , 0) we have (aαD
α)∗ = a∗αDα − bα. Iterating this argument, we obtain

(aαD
α)∗ = a∗αDα + Sα, where Sα ∈ Diff |α|−1. This yields

L̃∗ =
∑
|α|=l

a∗α (x)Dα + S,

where S ∈ Diff l−1. In particular, we have σ
(
L̃∗) = σ

(
L̃
)∗.

Step 4. If L ∈ Diff l (E;F ), then L∗ ∈ Diff l (F ;E) and σ (L∗) = σ (L)∗.

Let ψ be a local trivialization of E over an open neighbourhood U . Recall that such a
trivialization is given by a collection (e1, . . . , ea) of pointwise linearly independent sections over
U . By applying the Gram-Schmidt orthogonalization process, we can assume that (e1 (m) , . . . , ea (m))
is an orthonormal basis of Em for each m.

Assume U is a chart with local coordinates (x1, . . . , xn) and (f1, . . . , fb) is a trivialization
of F such that (f1 (m) , . . . , fb (m)) is orthonormal at each m ∈ U . Let L̃ =

∑
|α|≤l aα (x)D

α

be the local representation of L over U . Write also vol = ρ (x) dx1 ∧ . . . ∧ dxn = ρ (x) dx,
where ρ is a positive function on U . Then for any s ∈ Γ (E) and t ∈ Γ (F ) such that supp s and
supp t are contained in U , we have

(Ls, t)L2 =
(
L̃σ, τ

)
L2, ρ

=
(
σ, L̃∗τ

)
L2, ρ

,

where σ and τ are local representations of s and t respectively. Moreover, L̃∗ ∈ Diff l. □

2.4 Pseudodifferential operators
Before giving the formal definition of a pseudodifferential operator, let us consider the following
model case. Assume we want to solve the Poisson equation

∆u (x) = f (x) , x ∈ Rn, (2.48)

where f is a given function on Rn. Assume f ∈ L2 and we are looking for a solution u ∈ H2

of (2.48). Applying the Fourier transform to both sides, we obtain(
ξ21 + . . .+ ξ2n

)
û (ξ) = f̂ (ξ) =⇒ û (ξ) =

1

|ξ|2 f̂ (ξ)

=⇒ u (x) =

∫
Rn

ei⟨x,ξ⟩

|ξ|2 f̂ (ξ) dξ.
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In particular, the map, which assigns to f ∈ L2 a solution u ∈ H2 of (2.48) is not a differential
operator. This leads to the concept of a pseudodifferential operator, which will be very useful
below.

Let U ⊂ Rn be an open set and let l be an integer.

Definition 2.49. The class S̃l (U) consists of functions p = p (x, ξ) on U × Rn satisfying the
following: For any compact K ⊂ U we have

|Dβ
xD

α
ξ p (x, ξ) | ≤ Cα,β,K (1 + |ξ|)l−|α|, x ∈ K, ξ ∈ Rn, (2.50)

where α and β are multiindices.

Definition 2.51. The class Sl (U) consists of those p ∈ S̃l (U) for which the limit σl (p) (x, ξ) =
limλ→∞

p(x,λξ)
λl

exists for ξ ̸= 0 and

p (x, ξ)− ψ (ξ)σl (p) (x, ξ) ∈ S̃l−1 (U) , (2.52)

where ψ is a cut-off function such that ψ ≡ 0 near the origin and ψ ≡ 1 outside of the unit ball.

Example 2.53. Let p (x, ξ) =
∑

|α|≤l pα (x) ξ
α. If each pα is bounded in any Cr (U), then

p ∈ Sl (U).

Definition 2.54 (Local pseudodifferential operator). For any p ∈ S̃l (U) and any u ∈ C∞
0 (U)

set
Lpu (x) :=

∫
Rn

p (x, ξ) û (ξ) ei⟨x,ξ⟩dξ.

Example 2.55. If p (x, ξ) = |ξ|2 = ξ21 + . . . + ξ2n, then ξ2j û (ξ) = D̂2
ju so that Lu (x) =

−∑ ∂2u
∂x2j

= ∆u. More generally for any p (x, ξ) =
∑

|α|≤l pα (x) ξ
α the map Lp is a linear

differential operator of order l.

Example 2.56. Assume K ∈ C∞ (U × U ;C) and suppK (x, ·) is compact. Consider the map

Lu (x) =

∫
U

K (x, y)u (y) dy,

where u ∈ C∞
0 (U). We have∫
U

K (x, y)u (y) dy =

∫
U

K (x, y)

(∫
Rn

ei⟨y,ξ⟩û (ξ) dξ

)
dy

=

∫
Rn

ei⟨x,ξ⟩
(∫

U

ei⟨y−x,ξ⟩K (x, y) dy

)
û (ξ) dξ.

Setting p (x, ξ) :=
∫
U
ei⟨y−x,ξ⟩K (x, y) dy, we see that L = LUp , that is integral operators are

also pseudodifferential operators at least formally. In fact,

p (x, ξ) = e−i⟨x,ξ⟩
∫
U

ei⟨y,ξ⟩K (x, y) dy = e−i⟨x,ξ⟩K (x, ·)∨ (ξ) .

Hence ei⟨x,ξ⟩p (x, ξ) is essentially the Fourier transform of a compactly supported function and
therefore is rapidly decaying, that is (1 + |ξ|)N |p (x, ξ) | → 0 as ξ → ∞ for any N > 0, see
Step 1 of the proof of Theorem 2.57 for details.
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Theorem 2.57. Assume p belongs to the class

S̃l0 (U) :=
{
p ∈ S̃l (U) | ∃ cmpt K ⊂ U with supp p (·, ξ) ⊂ K ∀ξ ∈ Rn

}
.

Then Lp maps C∞
0 (Rn) into C∞ (Rn) and its closure yields a bounded map Lp : Hk (Rn) →

Hk−l (Rn).

Proof. The proof consists of the following steps.

Step 1. Lp (C∞
0 (Rn)) ⊂ C∞ (Rn).

If u ∈ C∞
0 (Rn), then

ξαû (ξ) = D̂αu (ξ) = (2π)−n
∫
Rn

Dαu (x) e−i⟨x,ξ⟩dx

yields that |ξα||û (ξ) | ≤ Cα, since suppu is compact. Hence, for any N ∈ N we have

|û (ξ) | ≤ CN (1 + |ξ|)−N , (2.58)

which implies in turn

|Dβ
xp (x, ξ) û (ξ) | ≤ CN,β (1 + |ξ|)l (1 + |ξ|)−N .

Furthermore, assume N ≫ 1. Then the integral
∫ (

Dβ
xp(x, ξ)

)
û(ξ)ei⟨x,ξ⟩ dξ converges

absolutely for any β. This implies that
∫
p(x, ξ)û(ξ)ei⟨x,ξ⟩ dξ is smooth in x.

Step 2. For any ξ, η ∈ Rn and any k ≥ 0 we have the inequality(
1 + |ξ|2

) k
2 ≤ 2

k
2

(
1 + |ξ − η|2

) k
2
(
1 + |η|2

) k
2 .

By the Cauchy-Schwartz inequality we have

1 + |ζ + η|2 ≤ 1 + (|ζ|+ |η|)2 ≤ 1 + 2
(
|ζ|2 + |η|2

)
≤ 2

(
1 + |ζ|2

) (
1 + |η|2

)
.

Substituting ζ = ξ−η we obtain 1+ |ξ|2 ≤ 2 (1 + |ξ − η|2) (1 + |η|2), which implies the claim
of this step.

Step 3. We prove the inequality ∥Lpu∥Hk ≤ C∥u∥Hk+l .

First notice that we have

L̂pu (ξ) = (2π)−n
∫
Rn

e−i⟨x,ξ⟩
∫
Rn

p (x, η) û (η) ei⟨x,η⟩dηdx

= (2π)−n
∫ (

e−i⟨x,ξ−η⟩p (x, η) dx
)
û (η) dη

=

∫
Rn

p̂ (ξ − η, η) û (η) dη.

Just like (2.58), we obtain

|p̂ (ζ, η) | ≤ C
(
1 + |ζ|2

)−N (
1 + |η|2

) l
2 .
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Furthermore, using Step 2 we have

|L̂pu (ξ) | ≤ C

∫ (
1 + |ξ − η|2

)−N (
1 + |η|2

) l
2 |û (η) |dη

≤ C

∫
(1 + |ξ − η|2)−N

(1 + |η|2) k
2

(
1 + |η|2

) l+k
2 |û (η) |dη

≤ C
(
1 + |ξ|2

)− k
2

∫ (
1 + |ξ − η|2

)−N+ k
2
(
1 + |η|2

) l+k
2 |û (η) |dη,

which yields in turn

|L̂pu (ξ) |
(
1 + |ξ|2

) k
2 ≤ C

∫ (
1 + |ξ − η|2

)−N+ k
2
(
1 + |η|2

) l+k
2 |û (η) |dη.

Applying Young’s inequality ∥f ∗ g∥L2 ≤ ∥f∥L1∥g∥L2 , for N ≫ 1 we obtain

∥Lpu∥Hk ≤ C∥
(
1 + |ξ|2

)−N+ k
2 ∥L1∥u∥Hk+l .

□

Let L : C∞
0 (M ;C) → C∞ (M ;C) be a linear map.

Definition 2.59. L is said to be a pseudodifferential operator of order l if for any chart U ⊂M
and any open subset U ′ ⊂ U such that Ū ′ ⊂ U there exists some

p ∈ Sl0 (U) = S̃l0 (U) ∩ Sl (U)

with the following property: For any u ∈ C∞
0 (U ′) we have Lu = Lpu.

Remark 2.60. Pseudodifferential operators are non-local in general, that is suppLu ̸⊂ suppu
in general. This lack of locality for pseudodifferential operators explains the appearence of U ′

in the above definition. In particular, the function p may depend on U ′.

Just like in the case of the differential operators we can define the l-symbol of a pseudodifferential
operator L by

σl (p) (x, ξ) = lim
λ→∞

p (x, λξ)

λl
, ξ ̸= 0

assuming that this limit exists.
Just like in the case of differential operators we have the following basic result.

Proposition 2.61. LetU be an open bounded subset of Rn equipped with coordinates (x1, . . . , xn)
and let p ∈ Sl0 (U). Let y = f (x) be new coordinates on U . Let L̃ be the representation of
L = Lp in these new coordinates, i.e.,

L̃v := L
(
v ◦ f−1

)
◦ f.

Then there is a function q ∈ Sl0 (f (U)) such that L̃ = Lq. Moreover,

σl (q) η = σl (p)

((
∂y

∂x

)t
η

)
.
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□
The above proposition yields that to any L ∈ PDiff l (M) we can associate a well-defined

(principal) symbol
σl (L) ∈ Smbl (C;C) ⊂ C∞ (T ∗M ;C) .

Notice, that if l is negative, the homogeneity property of the symbol implies that σl (L) may be
singular along the zero section. Thus, strictly speaking, σl is defined away from the zero section
only.

A simple consequence of Theorem 2.57 is the following.

Proposition 2.62. If M is compact, then the closure of any L ∈ PDiff l (M) yields a linear
bounded operator

L : Hk (M) −→ Hk−l (M) .

□
Let E and F be complex vector bundles over M .

Definition 2.63. A linear mapL : C∞
0 (M ;E) → C∞ (M ;F ) = Γ (F ) is called a pseudodifferential

operator if for any chart U such that E and F admit trivializations over U and any U ′ ⊂ U such
that Ū ′ ⊂ U there exists a matrix p = (pij) with pij ∈ Sl0 (U) so that the diagram

C∞
0 (U ′;E) C∞ (U ;F )

C∞
0 (U ′;Ca) C∞ (U ′;Cb

)
L

ΨE ΨF

Lp

commutes. The matrix p is called the local symbol of L (this depends on the choices made). If
L ∈ PDiff l (E;F ), then we have a well-defined principal symbol σl (L) ∈ Smbl (E;F ).

Theorem 2.64. For any smooth manifold M the sequence

0 −→ Kl−1 (E;F ) −→ PDiff l (E;F )
σl−−−→ Smbl (E;F ) −→ 0 (2.65)

is exact. Here Kl−1 := Kerσl. Morever, if M is compact, then

L ∈ Kl−1 =⇒ L : Hk (E) −→ Hk−(l−1) (F ) is bounded. (2.66)

Sketch of proof. We first prove (2.66). Thus, assume L ∈ Kl−1, that is σl (L) = 0. Then locally
we have L = Lp and

σl (p) = 0 =⇒ p ∈ S̃l−1
0

by (2.52). Then (2.66) follows from Theorem 2.57.
We also need to show that σl : PDiff l (E;F ) → Smbl (E;F ) is surjective. Thus given

σ ∈ Smbl (E;F ), pick a chart (U, (x1, . . . , xn)) such that both E and F admit trivializations
over U . Hence, given these choices σ can be written as a matrix p = (pij (x, ξ)) so that the local
pseudodifferential operator Lp can be defined. Then the global map L : Γ (E) → Γ (F ) can be
obtained with the help of a partition of unity. The reader may find the details in [Wel08, Thm.
IV.3.16]. □

Just like in the case of linear differential operators we have the following result.

Theorem 2.67. Let E,F, and G be Hermitian vector bundles over a compact manifold M .
Then the following holds:
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(a) IfL ∈ PDiff l (E;F ) and S ∈ PDiffs (F ;G), then S◦L ∈ PDiff l+s (E;G) and σl+s (S ◦ L) =
σs (S) ◦ σl (L).

(b) If L ∈ PDiff (E;F ), then the formal adjoint L∗ exists and belongs to PDiff l (F ;E).
Moreover, σl (L∗) = σl (L)

∗.

The proof, which is omitted here, can be found in [Wel08, Thm. IV.3.17].

2.4.1 Elliptic operators and their parametrices
Definition 2.68. An operator L ∈ PDiff l (E;F ) is said to be elliptic, if for all (m, ξ) ∈ T ∗M
such that ξ ̸= 0 the symbol σ (L) (m, ξ) : Em → Fm is an isomorphism.

Example 2.69. Consider the Laplacian ∆ acting on functions. By Example 2.41, σ (∆) (m, ξ) =
|ξ|2. Hence, ∆ is elliptic.

More generally, consider the Laplacian ∆ = dd∗+d∗d acting on p-forms. By Example 2.42,
we know that σ (d) (ξ)α = i ξ ∧ α. For ξ ∈ T ∗M denote by ξ# ∈ TmM the metric dual of ξ,
that is ξ# is defined by requiring that the equality

gm
(
ξ#, v

)
= ξ (v)

holds for any v ∈ TmM . A computation yields that the adjoint of σ (d) is given by

σ (d)∗ (ξ) β = −i
(
ιξ#β

)
,

where ıξ# : Λp+1T ∗
mM → ΛpT ∗

mM is the contraction:

ıξ#ω = ω
(
ξ#, · , . . . , ·

)
.

This yields in turn:

σ (∆)ω = (σ (d) ◦ σ (d∗) + σ (d∗) ◦ σ (d))ω = ξ ∧
(
ιξ#ω

)
+ ιξ# (ξ ∧ ω)

= ξ ∧
(
ιξ#ω

)
+ |ξ|2 ω − ξ ∧ iξ#ω = |ξ|2 ω.

Thus, σ (∆) is still given by the multiplication with |ξ|2 and, hence, ∆ is elliptic.

This example largely explains our interest to elliptic operators. It turns out that this class
contains many other interesting operators and has particularly good properties, which we consider
next.

Definition 2.70.
(i) If L : C∞ (E) → C∞ (F ) is a linear map, then we say that L ∈ OPl (E;F ) if the closure

of L yields a bounded map Hk (E) → Hk−l (F ) for each k ∈ R.

(ii) For L : C∞ (E) → C∞ (F ), a linear map S : C∞ (F ) → C∞ (E) is called a parametrix,
if

L ◦ S − idF ∈ OP−1 (F ) and S ◦ L− idE ∈ OP−1 (E) .

For example, any pseudodifferential operator of order l on a compact manifold belongs to
OPl by Proposition 2.62.

A parametrix should be understood as an approximate inverse in some sense. It should not
be surprising that explicit examples are not easy to construct. However, one general way to
obtain a class of examples is as follows.
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Suppose Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω. Consider the classical
Dirichlet boundary value problem {

∆u = f in Ω,

u
∣∣
∂Ω

= 0,
(2.71)

where ∆ = −∑ ∂2

∂x2j
is the standard Laplacian acting on functions. I will use the well-known

fact that the solution operator G, which assigns to f a unique solution u = uf of (2.71) belongs
to OP−2 (this is proved below in fact). Taking this as granted for now, consider a slightly more
general boundary value problem {

(∆ +K)u = 0 in Ω,

u
∣∣
∂Ω

= 0,

whereK ∈ Diff1. Then for L := ∆+K we haveG◦L−id = G◦∆+G◦K−id = G◦K ∈ OP−1

and also L ◦G− id = K ◦G ∈ OP−1. Thus, G is a parametrix for ∆+K.

One of the main theorems about elliptic operators is the following.

Theorem 2.72. For any ellipticL ∈ PDiff l (E;F ) there exists a parametrix S ∈ PDiff−l (F ;E).

Proof. For any elliptic L the symbol σ (L) is invertible at each (m, ξ) , ξ ̸= 0. Then by
Theorem 2.64 there exists some S ∈ PDiff−l such that σ−l (S) = σl (L)

−1. We have

σ0 (L ◦ S − idF ) = σl (L) ◦ σ−l (S)− σ0 (idF ) = 0,

so that L ◦ S − idF ∈ OP−1.
A similar argument yields that S ◦ L− idE belongs to OP−1 too. □

2.4.2 Elliptic estimate
Let B1 and B2 be two Banach spaces. Recall that an operator K : B1 → B2 is said to be
compact, if the image of the unit ball in B1 is relatively compact in B2. This means that for
any sequence uj in B1 such that ∥uj∥B1 ≤ 1 there exists a subsequence ujk such that Kujk
converges in B2.

Proposition 2.73. Let M be a closed manifold, L ∈ Diff l (E;F ) an elliptic operator, and k a
real number. Then the following holds:

(i) HL := Ker
(
L : Hk → Hk−l) is finite-dimensional and consists of smooth sections only;

In particular, HL does not depend on k.

(ii) Denote V := H⊥
L ∩ Hk+l (E), where ⊥ means the orthogonal complement in L2 (E).

Then for all k ≥ 0 there exists a constant Ck > 0 such that

∥Lv∥Hk ≥ Ck∥v∥Hk+l (2.74)

holds for all v ∈ V provided k ≥ 0.

Proof. The proof consists of the following steps.

Step 1. K ∈ OP−1 (E;F ) =⇒ K : Hk (E) → Hk (F ) is compact provided M is compact.
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Indeed, K : Hk (E) → Hk+1 (F ) is bounded and the embedding j : Hk+1 (F ) → Hk (F )
is compact, since M is compact. Then K : Hk (E) → Hk (F ) is compact as the composition
of bounded and compact linear maps.

Step 2. We prove (i).

For the proof we need the following standard fact of functional analysis: The unit sphere
in a Banach space B is compact if and only if B is finite-dimensional. With this understood,
we obtain that for a compact operator R : B → B, where B is a Banach space, any eigenspace
Bλ := {u | Ru = λu} is finite dimensional provided λ ̸= 0.

Assume Lu = 0. Applying a parametrix of L to both sides of this equation, we obtain
u+Ru = 0, where R = S ◦ L− id : Hk → Hk is compact. Hence, the space

Hk
L :=

{
u ∈ Hk | Lu = 0

}
=
{
u ∈ Hk | Ru = −u

}
is finite-dimensional. Moreover, since R ∈ OP−1,

u ∈ Hk =⇒ u ∈ Hk+1 =⇒ u ∈ Hk+2 =⇒ . . .

so that u ∈ ∩Hs = C∞. In particular, each u ∈ Hk
L is smooth so that Hk

L in fact does not
depend on k.

Step 3. We prove (2.74).

Assume (2.74) fails, that is there exists a sequence vj ∈ V such that

∥vj∥Hk+l = 1 and Lvj −→ 0 in Hk.

Applying the parametrix S we obtain that vj +Rvj → 0 in Hk+l. Since R is compact, vj has a
subsequence, which converges to some v in Hk+l. Then we must have

∥v∥Hk+l = 1, Lv = 0, and v ∈ (KerL)⊥L2 .

This contradiction finishes the proof. □

Corollary 2.75 (Elliptic estimate). Let M be a closed manifold and L ∈ Diff l (E;F ) be an
elliptic operator. Then for any k ≥ 0 there exists a constant Ck > 0 such that the estimate

∥u∥Hk+l ≤ Ck (∥Lu∥Hk + ∥u∥L2)

holds for any u ∈ Hk+l.

Proof. Since HL ⊂ Hk+l, for any u ∈ Hk+l we can write u = v + w, where v ∈ HL

and (v, w)L2 = 0. Notice that since v is smooth, w = u − v ∈ Hk+l, that is we have the
decomposition

Hk+l = HL ⊕ H⊥L2

L ∩Hk+l.

Since HL is finite dimensional, the restriction of ∥ · ∥Hk+l to HL is equivalent to the restriction
of ∥ · ∥L2 . Combining this with (2.74) we obtain

∥u∥Hk+l ≤ ∥v∥Hk+l + ∥w∥Hk+l ≤ C ′
k∥v∥L2 + C ′′

k∥Lw∥Hk

= C ′
k∥v∥L2 + C ′′

k∥Lu∥Hk ≤ Ck (∥Lu∥Hk + ∥u∥L2) .

This finishes the proof. □
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Theorem 2.76. Let M be a closed manifold and L ∈ Diff l (E;F ) be an elliptic operator. Then
for any k ∈ R the operator L : Hk+l (E) → Hk (F ) is Fredholm, i.e.,

1. dimKerL <∞;

2. The image of L is a closed subspace of Hk (F );

3. The cokernel CokerL := Hk (F ) / ImL is finite dimensional.

Proof. We shall give the proof only in the case k ≥ 0.
We know already from Proposition 2.73, (i) that KerL is finite dimensional. The rest of the

proof consists of the following steps.

Step 1. ImL is closed.

Clearly ImL = L (V ), where V = H⊥
L ∩Hk+l (E). Assume w lies in the closure of L (V ),

that is there exist a sequence vj ∈ V such that Lvj → w. Then by (2.74) we have

∥vi − vj∥Hk+l ≤ C∥Lvi − Lvj∥Hk ≤ C (∥Lvi − w∥Hk + ∥Lvj − w∥Hk) .

This yields that (vj) is a Cauchy sequence, hence converges to some v ∈ V . Then we must have

Lv = lim
j→∞

Lvj = w.

Step 2. Let L∗ be the formal adjoint of L. Then w ∈ Im (L)⊥L2 ∩ Hk (F ) if and only if
w ∈ KerL∗.

If w ∈ Im (L)⊥L2 ∩Hk (F ), then for any u ∈ Hk+l (E) we have

0 = (Lu,w)L2 = (u, L∗w)L2 =⇒ L∗w = 0.

Conversely, if L∗w = 0, then (Lu,w)L2 = 0 for any u ∈ Hk+l (E).

Step 3. We prove this theorem.

It only remains to show that dimCokerL <∞. To see this, identify CokerLwith (ImL)⊥L2∩
Hk (F ) which equals KerL∗ by the preceding step. It remains to notice that L∗ is elliptic too,
so that dimKerL∗ <∞ by Proposition 2.73, (i). □

The proof of the above theorem actually implies the following.

Corollary 2.77. Let M be a compact manifold and L ∈ Diff l (E;F ) be an elliptic operator.
Given w ∈ Hk (F ) the equation

Lu = w (2.78)

has a solution u ∈ Hk+l (E) if and only if w ⊥ KerL∗. Moreover, if w ∈ C∞ (M ;F ), then any
solution u of (2.78) is smooth.

Proof. We only need to show that w ∈ C∞ ⇒ u ∈ C∞. However, this follows immediately
from ∩Hk (E) = C∞ (E). □

Corollary 2.79 (Fredholm’s alternative). Let M be a compact manifold and L ∈ Diff l (E;F )
an elliptic operator. Then one and only one of the following statements holds:

(a) The inhomogeneous equation Lu = w has a solution for any w ∈ Γ (F ).

(b) The homogeneous equation L∗v = 0 has a non-trivial solution. □
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Corollary 2.77 implies in particular Theorem 1.38. To see this, it just suffices to recall that
the Laplacian is formally self-adjoint, that is ∆∗ = ∆, which is the content of Proposition 1.36.

In the case of the Laplacian, it is also possible to give a more detailed version of Corollary 2.77
as follows.

Theorem 2.80 (Hodge). Let M be a closed oriented Riemannian manifold. Denote Hk :=
Ker

(
∆: Ωk (M) → Ωk (M)

)
. We have the following decomposition

Ωk (M) = Hk ⊕ Im d⊕ Im d∗,

where all three spaces are orthogonal with respect to the L2-scalar product.

Proof. First we show that Hk is orthogonal to Im d in the L2-sense. Indeed, if ω ∈ Hk and
η ∈ Ωk−1 (M), then

⟨ω, dη⟩L2 = ⟨d∗ω, η⟩L2 = 0,

since d∗ω = 0 by Proposition 1.29.
The claims that Hk ⊥ Im d∗ and Im d ⊥ Im d∗ can be obtained by using similar arguments.
Furthermore, to prove the rest of the claim it suffices to show that Im∆ = Im (d)⊕ Im d∗.

Clearly, we have Im∆ ⊂ Im d⊕ Im d∗ by the definition of ∆. The converse inclusion follows
from Corollary 2.77 and the self-adjointness of ∆. □

2.5 Elliptic complexes
The de Rham complex can be generalized as follows. Let E0, E1, . . . , EN be Hermitian vector
bundles over a smooth manifold M . Assume we have the sequence

Γ (E0)
L0−−→ Γ (E1)

L1−−→ Γ (E2) −→ . . .
LN−1−−−→ Γ (EN) , (2.81)

where each Lj ∈ Diff l (Ej;Ej+1) and l does not depend on j. Assume also that (2.81) is a
complex, i.e., Lj+1 ◦ Lj = 0.

Definition 2.82. (2.81) is said to be an elliptic complex, if the associated sequence of symbols

0 −→ π∗E0
σl(L0)−−−−→ π∗E1

σl(L1)−−−−→ . . .
σl(LN−1)−−−−−−→ π∗EN −→ 0

is exact away from the zero section of T ∗M .

Just like in the case of the de Rham complex, we can define the corresponding cohomology
groups by

Hj (E) :=
Ker (Lj : Γ (Ej) −→ Γ (Ej+1))

Im (Lj−1 : Γ (Ej−1) −→ Γ (Ej))
,

where H0 (E) = Ker L0 and HN (E) = Γ (EN) / ImLN−1.

Example 2.83. Any elliptic operator L : Γ (E) → Γ (F ) is a (very short) elliptic complex.

Example 2.84. The de Rham complex of any smooth manifold.

New examples of elliptic complexes will be given below.
Associated to (2.81), is the (generalized) Laplacian

∆j := L∗
jLj + Lj−1L

∗
j−1 : Γ (Ej) −→ Γ (Ej) ,

which is clearly self-adjoint.
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Exercise 2.85. Show that ∆j is an elliptic operator provided (2.81) is an elliptic complex.

Any element of the space

H (Ej) := Ker∆j ⊂ Γ (Ej)

is called harmonic.

Theorem 2.86. If M is closed connected oriented Riemannian manifold, then the following
holds:

(i) s ∈ H (Ej) ⇐⇒ Ljs = 0 and L∗
j−1s = 0.

(ii) There is an orthogonal decomposition

Γ (Ej) = H (Ej)⊕ ImLj−1 ⊕ ImL∗
j .

(iii) dimH (Ej) <∞ and there is a canonical isomorphism

H (Ej) −→ Hj (E) , s 7−→ [s] .

The proof of this theorem can be obtained by a straightforward modification of the proofs
of the corressponding statements for the de Rham complex. I leave the details to the reader.

2.5.1 The Dolbeault complex
In this section M denotes a complex manifold of complex dimension n. This means that M is
a real manifold (of dimension 2n), each point admits a chart of the form ψ : U → Cn and each
change-of-coordinates map ψ ◦ ϕ−1 : Cn → Cn is holomorphic.

Just like in the case of Riemann surfaces, writingψ = (z1, . . . , zn) we obtain real coordinates
(x1, y1, . . . , xn, yn), where

xj = Re zj and yj = Im zj.

Then we can define the complex structure I : TM −→ TM by

I
∂

∂xj
=

∂

∂yj
and I

∂

∂yj
= − ∂

∂xj
.

Using the fact that the change-of-coordinates maps are holomorphic, it can be shown that I is
well-defined. Since I2 = −id by the very definition, we obtain that each tangent space TmM is
equipped with the structure of a complex vector space via

(a+ bi) · v = a v + b Iv, v ∈ TmM.

Then the complexification of the cotangent space splits:

T ∗
mM ⊗ C = (T ∗

mM)1,0 ⊕ (T ∗
mM)0,1 ,

(T ∗
mM)1,0 := {ψ : TmM −→ C | ψ (Iv) = iψ (v)} ,

(T ∗
mM)0,1 := {ψ : TmM −→ C | ψ (Iv) = −iψ (v)} .

In other words, (T ∗
mM)1,0 consists of C-linear functionals, whereas (T ∗

mM)0,1 consists of C-
antilinear ones.

Since (T ∗
mM)1,0 and (T ∗

mM)0,1 are isomorphic via ψ 7→ ψ̄, we obtain

dimC (T
∗
mM)1,0 = dimC (T

∗
mM)0,1 =

1

2
dimC (T

∗
mM ⊗ C) = n.
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Remark 2.87. By the way of reminder, for any real vector space V its complexification V ⊗C is
a complex vector space with the obvious complex structure, namely v⊗z 7→ v⊗ iz. Suppose V
is itself a complex vector space regarded as a real vector space equipped with an endomorphism
I such that I2 = −id. Then its complexification V ⊗R C inherits a complex structure from
V , namely I ⊗ id. The default complex structure on V ⊗ C is v ⊗ z 7→ v ⊗ iz. Then on
V 1,0 = {v ⊗ z − Iv ⊗ iz | v ∈ V, z ∈ C} these two complex structures coincide, while
on V 0,1 = {v ⊗ z − Iv ⊗ iz | v ∈ V, z ∈ C} they have opposite signs. The conjugation
v⊗z 7→ v⊗z̄ is a complex anti-linear isomorphism with respect to the default complex structure
but a complex linear isomorphism between (V 1,0, I ⊗ id) and (V 0,1, I ⊗ id). In particular,
dimC V

1,0 = dimC V
0,1 = dimR V , although V 1,0 and V 0,1 are not naturally isomorphic.

If (z1, . . . , zn) are local holomorphic coordinates in a neighbourhood of m, denote

dzj = dxj + i dyj ∈ (T ∗
mM)1,0 and dz̄j = dxj − i dyj ∈ (T ∗

mM)0,1 ,

where j = 1, . . . , n. It is easy to see that dz := (dz1, . . . dzn) consists of linearly independent
1-forms. Hence, dz is a basis of (T ∗

mM)1,0 at each point m where the coordinates (z1, . . . , zn)
are defined. Likely, dz̄ = (dz̄1, . . . , dz̄n) is a basis of (T ∗

mM)0,1.
Furthermore, using the isomorphism

Λk (U ⊕ V ) = ⊕
p+q=k
p,q≥0

ΛpU ⊗ ΛqV

we obtain the decomposition

Λk (T ∗M ⊗ C) = ⊕
p+q=k

Λp (T ∗M)1,0 ⊗ Λq (T ∗M)0,1 =: ⊕
p+q=k

Λp,q.

Denote
Ωp,q (M) := Γ (Λp,q) .

Thus, ω ∈ Ωp,q (M) if and only if ω is a smooth complex-valued differential form of degree
p+ q and locally ω can be written in the following form

ω =
∑

i1<...<ip
j1<...<jq

ωi1...ip;j1...jq dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq .

For any ω ∈ Ω0,0 (M) ∼= C∞(M ;C) we have dω = ∂ω + ∂̄ω, where

∂ω =
n∑
j=1

∂ω

∂zj
dzj ∈ Ω1,0 (M) and ∂̄ω =

n∑
j=1

∂ω

∂z̄j
dz̄j ∈ Ω0,1 (M) .

More generally, if ω ∈ Ωp,q (M), then we still have dω = ∂ω + ∂̄ω, where

∂ω =
∑

i1<...<ip
j1<...<jq

∂ωi1...ip;j1...jq ∧ dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq ,

∂̄ω =
∑

i1<...<ip
j1<...<jq

∂̄ωi1...ip;j1...jq ∧ dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq .

In particular, ∂ : Ωp,q → Ωp+1,q and ∂̄ : Ωp,q → Ωp,q+1.
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Notice that since d = ∂ + ∂̄, we have

d2 = 0 ⇐⇒ ∂2 = 0, ∂̄2 = 0, ∂∂̄ = −∂̄∂.
Therefore, for any fixed p such that 0 ≤ p ≤ n we obtain the following complex

0 −→ Ωp,0 (M)
∂̄−−→ Ωp,1 (M)

∂̄−−→ Ωp,2 (M)
∂̄−−→ . . .

∂̄−−→ Ωp,n (M) −→ 0,

which is called the Dolbeault complex. The corresponding cohomology groups

Hp,q (M) :=
Ker

(
∂̄ : Ωp,q −→ Ωp,q+1

)
Im
(
∂̄ : Ωp,q−1 −→ Ωp,q

)
are called the Dolbeault cohomolgy groups of M . Notice, however, that unlike the de Rham
cohomology groups, the Dolbeault cohomology groups depend on the complex structure of M .
In particular, they are not topological invariants of M .

Proposition 2.88. For any complex manifold M the Dolbeault complex is elliptic.

Proof. Just like in Example 2.42, for the symbol of the ∂̄-operator we have

σ
(
∂̄
)
(ξ)ω = i ξ0,1 ∧ ω,

where ξ0,1 = 1
2
(ξ + iξ (I·)) is the (0, 1)-part of ξ and ω ∈ Λp,q. We have to show the following

ξ0,1 ∧ ω = 0 ⇐⇒ ω = ξ0,1 ∧ η
for some η ∈ Λp,q−1, where ξ ̸= 0 ⇔ ξ0,1 ̸= 0.

Assume ξ is based at a point m. Since ξ0,1 ̸= 0, we can find a complex basis (ψ1, . . . , ψn)
of (T ∗

mM)1,0 such that ψ1 = ξ0,1. Then ω ∈ Λp,qm can be uniquely written in the form

ω =
∑

i1<...<ip
j1<...<jq

ωi1<...<ip;j1<...<jq ψi1 ∧ . . . ∧ ψip ∧ ψ̄j1 ∧ . . . ∧ ψ̄jq .

Then ξ0,1 ∧ ω = 0 ⇔ ψ̄1 ∧ ω = 0 yields ωi1,...ip;j1,...jq = 0 provided j1 ̸= 1. Hence,

ω =
∑

i1<...<ip
j1=1<j2<...<jq

ωi1...ip;1 j2...jq ψi1 ∧ . . . ∧ ψip ∧ ψ̄1 ∧ ψ̄j2 ∧ . . . ∧ ψ̄jq

= (−1)p ψ̄1 ∧
∑

i1<...<ip
j2<...<jq

ωi1...ip;1 j2...jq ψi1 ∧ . . . ∧ ψip ∧ ψ̄j2 ∧ . . . ∧ ψ̄jq

= ξ0,1 ∧ η.
This finishes the proof of this proposition. □

Corollary 2.89. If M is a compact complex manifold, then hp,q (M) := dimCH
p,q (M) <∞.

□
The integers hp,q (M) are called the Hodge numbers of M .
Let ∂̄∗ be the formal adjoint of ∂̄. The Laplacian corresponding to the Dolbeault complex is

then
□ := ∂̄∂̄∗ + ∂̄∗∂̄,

which is called the Hodge-Laplacian. By Theorem 2.86 we have an isomorphism

Hp,q (M) ∼= Ker (□ : Ωp,q (M) −→ Ωp,q (M)) .
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Definition 2.90. Let g be a Riemannian metric on a complex manifoldM such that g (Iv, Iw) =
g (v, w) for all v, w (such metrics always exist). Define a 2-form ω on M by

ω (v, w) := g (Iv, w) .

Then g is said to be Kähler, if ω is closed.

Kähler metrics should be understood as those metrics, which fit with the complex structure
particularly well (this may not be obvious from the definition and I shall not try to justify this
claim here).

One can show that the induced metric on an embedded complex submanifold of a Kähler
manifold is itself Kähler. Furthermore, the induced metric on CP n = S2n+1/U(1) is Kähler
(this is known as the Fubini–Study metric). This yields plenty of examples of Kähler manifolds.
Albeit these facts are rather elementary, I omit the proofs here.

Theorem 2.91. If g is Kähler, then ∆ maps Ωp,q (M) into Ωp,q (M) and ∆ = 2□.
In particular, if M is compact and Kähler, for any k ≥ 0 we have

Hk (M) ∼= ⊕
p+q=k

Hp,q (M) and Hp,q (M) ∼= Hq,p (M) (2.92)

for all p and q. □

Corollary 2.93. If M is a compact Kähler manifold, then all odd Betti numbers of M are even.

Proof. By (2.92) we have

b2k+1 (M) = h0,2k+1 + h1,2k + . . .+ h2k,1 + h2k+1,0

= 2
(
h0,2k+1 + h1,2k + . . .+ hk,k+1

)
,

where the last equality follows from hp,q (M) = hq,p (M). □

Corollary 2.94. There exist compact complex manifolds, which can not be embedded into any
complex projective manifold.

Sketch of the proof. Consider the following action of Z on C2 \ {0} :
a · (z1, z2) =

(
e−az1, e

−az2
)
. (2.95)

Think of C2 \ {0} as R× S3 via the diffeomorphism

R× S3 −→ C2 \ {0}, (t, σ) 7−→ et · σ
Then the above action becomes a · (t, σ) = (t− a, σ) . Hence, the quotient M = C2 \ {0}/Z is
diffeomorphic to S1 × S3. In particular, M is compact and b1 (M) = b1 (S

1 × S3) = 1.
Furthermore, notice thatM is a complex manifold, since action (2.92) preserves the standard

complex structure of C2 \ {0}. However, M cannot be embedded as a complex submanifold
into CPN , since otherwise M would be Kähler, which would contradict Corollary 2.93. □

Remark 2.96. It should be noticed, that any holomorphic function on a compact complex
manifold is constant. This fact follows easily from the maximum modulus principle. Hence, a
compact complex manifold can never be embedded (as a complex submanifold) into CN . Thus,
CPN can be seen as the "best" replacement for CN for complex manifolds. Then Corollary 2.94
claims essentially that the Whitney embedding theorem is false in the context of complex
manifolds.

Also, Corollary 2.94 should be contrasted with the fact that any compact Riemann surface
can be embedded into some complex projective space.
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2.6 The elliptic calculus
In this section I describe the main ideas discussed in this chapter from a more abstract point of
view. This section is not essential for understanding the subsequent material; it is meant more
to demonstrate logical connections between various notions that have appeared in this chapter.
The reader may safely skip this section by the first reading and only return once the material
preceding this section is well digested.

If M is a closed oriented Riemannian manifold and E → M is a vector bundle, we have
seen that Sobolev spaces form a sequence

H0(E) = L2(E) ⊃ H1(E) ⊃ H2(E) ⊃ . . .

In fact, Hk(E) is well-defined for all k ∈ Z (or even k ∈ R, however, this will be of minor
importance below). These have the following properties:

(1)
(
Hk(E), ∥ · ∥k

)
is a Banach (Hilbert) space for each k ∈ Z;

(2) For each k ≥ l we have an inclusion Hk(E) ⊂ H l(E), which is a bounded map, i.e.,

u ∈ Hk =⇒ u ∈ H l and ∥u∥l ≤ Ck,l∥u∥k.

Moreover, if k > l, then the inclusion Hk(E) ↪→ H l(E) is compact.

(3)
⋂
k∈Z

Hk(E) = C∞(E) is dense in each Hk(E).

One says that
(
Hk(E), ∥ · ∥k

)
is a scale of Banach spaces (or a Banach scale).

Leaving Banach scales aside for a moment, recall that Smbl(E;F ) denotes the space of
symbols of degree l, where F is a vector bundle over M , see (2.39). To simplify the exposition
somewhat, it will be convenient to assume that F = E, albeit this is certainly non-essential as
the reader will be able to see on his own. Thus,

Smb = Smb(E) :=
⊕
l∈N0

Smbl(E)

is a graded algebra with respect to the obvious multiplication.
Likewise, we have the filtered algebra of differential operators

Diff = Diff(E) :=
⋃
l∈N0

Diff l(E).

The qualifier ‘filtered’ means that we have an increasing sequence Diff0 = C∞(End(E)) ⊂
Diff1 ⊂ Diff2 ⊂ . . . and if L1 ∈ Diff l1 and L2 ∈ Diff l2 , then L1 ◦ L2 ∈ Diff l1+l2 . These come
equipped with “the principal symbol” homomorphism

σ : Diff → Smb such that σ
(
Diff l

)
⊂ Smbl

for all l ∈ N0. In other words, σ has degree zero as a homomorphism of filtered algebras.
Moreover, the sequence

0 → Diff l−1 → Diff l
σ−−−−→ Smbl (2.97)

is exact for any l ∈ N0 and each L ∈ Diff l yields a bounded map L : Hk → Hk−l, i.e., L has
degree −l viewed as a map of the Banach scale.
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With this understood, the main objective of this chapter is a construction of enhancements
of algebras Diff and Smb. In the case of Smb, there are a few possibilities to proceed, which
correspond to the choices of various classes of functions such as Sl, S̃l or Sl0. Ignoring non-
essential details, the outcome is a filtered algebra

S =
⋃
l∈Z

Sl, where . . . ⊂ Sl−1 ⊂ Sl ⊂ Sl+1 ⊂ . . .

Denoting S[l] := Sl/Sl−1, we have the natural projection πl : Sl → S[l]. Also, one can construct
a filtered algebra

Ψ =
⋃
l∈Z

Ψl

with the following properties:

(a) Diff l ⊂ Ψl provided l ≥ 0;

(b) There is a degree zero homomorphism σl : Ψl → S[l]. Moreover, for l ≥ 0 we have
Smbl ⊂ S[l] and the restriction of σl to Diff l yields the principal symbol of a differential
operator;

(c) For any k ∈ Z there is a homomorphism Ψl → B
(
Hk;Hk−l), where B denotes the space

of linear bounded maps. Moreover, this extends the natural homomorphism Diff l →
B
(
Hk;Hk−l) and yields a homomorphism of filtered algebras: Ψ → B(H);

(d) The sequence
0 → Ψl−1 −→ Ψl

σ−−−−→ S[l] → 0 (2.98)

is exact for each l ∈ Z (cf. (2.97)).

Notice that at this point I deviate slightly from the exposition of Section 2.4, namely the
kernel of σ in that setting is Kl−1 rather than Ψl−1. This is a minor point which allows one to
prove the main result omitting certain technical details. By choosing an appropriate class of
symbols, one can construct an algebra of pseudo-differential operators Ψ so that (2.98) holds.

Below I show that the main results about elliptic operators (elliptic estimates and Fredholm-
ness) are formal consequences of Properties (a)–(d). We begin with the following simple
observation.

Proposition 2.99. Any R ∈ Ψ−1 viewed as a map Hk → Hk+1 ↪→ Hk is compact.

The proof of this proposition follows immediately from the observation that the composition
of a bounded and compact operators is a compact operator. Thus, the above proposition is a
simple observation indeed; I stated it formally for convenience only.

Definition 2.100. An operator L ∈ Ψl is said to be elliptic, if its principal symbol is invertible
in S.

Clearly, if σ(L) ∈ Sl and σ(L)−1 exists, then it must be of degree −l, because 1 = σ(id) =
σ(L ◦ L−1) = σ(L)σ(L)−1 and 1 ∈ S0.

Proposition 2.101. Any elliptic operator L admits a parametrix, i.e., there exists an operator
P ∈ Ψ such that

L ◦ P = id+R1 and P ◦ L = id+R2,

where R1, R2 ∈ Ψ−1.
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Proof. Since L is elliptic, there exists σ(L)−1 and σ(L)−1 ∈ S−l. By the exactness of (2.98), we
can find some P ∈ Ψ−l with σ(P ) = σ(L)−1. Hence, σ(PL − id) = σ(P )σ(L) − σ(id) = 0.
Using the exactness of (2.98) again, we conclude that R2 := PL − id belongs to Ψ−1. The
proof that R1 := LP − id ∈ Ψ−1 requires cosmetic changes only. □

The following statements follow rather easily from the existence of a parametrix. Notice,
that I do not try to prove the most general statements here, rather just to illustrate the ideas.

Corollary 2.102 (Elliptic estimate). Let L ∈ Ψl be elliptic. There exists a positive constant C
such that for any u ∈ Hk we have

∥u∥k ≤ C
(
∥Lu∥k−l + ∥u∥k−1

)
. (2.103)

Proof. Indeed, since u = PLu−R2u, using (c) we immediately obtain (2.103). □

Corollary 2.104 (Fredholmness). Any elliptic operator L ∈ Ψl viewed as a map Hk → Hk−l

is Fredholm. Moreover, if u ∈ KerL and u ∈ Hk, then u ∈ C∞.

Proof. Pick k ∈ Z an assume that un is any sequence in Ker
(
L : Hk → Hk−l) such that

∥un∥k = 1. If P is a parametrix, we have un = −R2un for all n. Using the compactness of
R2, we obtain that there is a subsequence unj

, which converges in Hk. In other words, the unit
sphere in the space Ker

(
L : Hk → Hk−l) equipped with the norm ∥ · ∥k is compact. Thus,

by a well-known result from functional analysis, dimKer
(
L : Hk → Hk−l) < ∞. Moreover,

utilizing the equality u = −R2u, we obtain

u ∈ Hk =⇒ u ∈ Hk+1 =⇒ u ∈ Hk+2 . . . =⇒ u ∈ C∞.

In particular, KerL does not depend on the choice of k.
It remains to prove that ImL is closed and dimCokerL < ∞. To this end, we have the

following.

Exercise 2.105. If H is a Hilbert space and R : H → H is any compact operator, then id + R
is Fredholm. In particular, the image of id+R is closed.

With this at hand, observe that

Im
(
id+R1

)
= Im

(
LP : Hk−l → Hk−l) ⊂ Im

(
L : Hk → Hk−l).

Let V be a complement of Im
(
id+R1

)
inHk−l. Thus, dimV <∞ and there exists a subspace

V1 ⊂ V such that Im
(
L : Hk → Hk−l) = Im

(
id+R1

)
⊕ V1. In particular, ImL is closed and

dimCokerL ≤ dimCoker(id+R1) <∞. □

It is worthwhile to note that Corollary 2.104 is a very satisfactory statement about the
solvability of the equation Lu = v. Indeed, choosing a basis f1, . . . , fN of the cokernel of
L, Corollary 2.104 simply says that Lu = v is solvable, if and only if

f1(v) = 0, . . . fN(v) = 0.

For example, in the case of the Laplacian (acting on functions), we have N = 1 and f(v) =∫
M
v and Im∆ is necessarily contained in Ker f so that the above corollary is clearly optimal.

In general, checking a finite number of linear conditions on v is typically not too hard.
The power of Corollary 2.104 is perhaps best seen by contrasting with the case where the

base manifold may be non-closed. In this case, the image of an elliptic operator may well fail
to be closed and even if one obtains a finite number of linear necessary conditions, there is still
no guarantee that the equation Lu = v is solvable. Even if it is solvable for some v0, this may
fail to be the case for some v arbitrarily close to v0 . . .

Having said this though, for suitable classes of non-closed manifolds and/or elliptic operators
one can still prove the Fredholm property. However, this goes beyond the goals of these notes.
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The Atiyah–Singer index theorem

3.1 Fredholm maps and their indices
Let H1 and H2 be separable Hilbert spaces. Recall that a linear bounded map T : H1 → H2 is
said to be Fredholm, if dimKerT < ∞, ImT ⊂ H2 is a closed subspace, and dimCokerT =
dimH2/ ImT <∞. Denote by F (H1;H2) the set of all Fredholm maps. Also, let B (H1;H2)
denote the space of all linear bounded maps H1 → H2 equipped with the operator norm

∥T∥ := sup
h∈H1\{0}

∥Th∥H2

∥h∥H1

.

Theorem 3.1. F (H1;H2) is an open subset of B (H1;H2). The map

ind : F (H1;H2) −→ Z, T 7−→ indT := dimKerT − dimCokerT

is constant on each connected component of F (H1;H2).

Proof. The proof consists of the following steps.

Step 1. F (H1;H2) is open in B (H1;H2).

Pick T0 ∈ F (H1;H2) and denote V := (KerT0)
⊥ ⊂ H1 and W = (ImT0)

⊥ ∼= CokerT0.
For any T ∈ B (H1;H2) consider the map

T̃ : V ⊕W −→ H2, T̃ (v, w) = Tv + w.

Since T̃0 is an isomorphism, T̃ is also an isomorphism provided T lies in a sufficiently small
neighbourhood U ⊂ B (H1, H2) of T0. In particular, for T ∈ U we have

(KerT ) ∩ V = {0} =⇒ dimKerT <∞.

Moreover, T (V ) = T̃ (V ) ⊂ H2 is a closed subspace of finite codimension. Hence, ImT is
also closed and of finite codimension. Thus, T is Fredholm.

Step 2. ind is constant on U , where U is as in the preceding step.

Keeping the notations of the preceding step, we have the (non-orthogonal) decomposition

H1 = KerT ⊕ Z ⊕ V,
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where Z := (KerT ⊕ V )⊥. Then T : Z ⊕ V → T (Z) ⊕ T (V ) = ImT is an isomorphism.
Moreover,

KerT0 ∼= H1/V ∼= KerT ⊕ Z and CokerT0 ∼= H2/ ImT0 = H2/T0 (V ) . (3.2)

Furthermore, since for any T ∈ U the homomorphism T̃ is in fact an isomorphism and T (V ) =
T̃ (V ), we obtain

H2/T (V ) = H2/T̃ (V ) ∼= T̃ (W ) ∼= W.

The left hand side can be interpreted as a complement of T (V ) inH2. This equals the complement
of T (V ) in ImT plus the complement of ImT in H2. Hence,

CokerT0 = W ∼= H2/T (V ) = T (Z)⊕ CokerT ∼= Z ⊕ CokerT.

Combining this with (3.2), we obtain indT = indT0. □

Remark 3.3. One can show that indT1 equals indT2 if and only if T1 and T2 lie in the same
connected component of F (H1;H2).

Proposition 3.4. If T is Fredholm and K is compact, then T + K is also Fredholm and
ind (T +K) = ind (T ).

Proof. The proof consists of the following steps.

Step 1. A bounded map T : H1 → H2 is Fredholm if and only if there exist bounded maps
S1, S2 : H2 → H1 such that

S1 ◦ T = idH1 +R1 and T ◦ S2 = idH2 +R2,

where both R1 and R2 are compact.

The proof of this step is left as an exercise (see, however, the proof of Theorem 2.76).

Step 2. We prove the statement of this proposition.

Let T be a Fredholm map. Keeping the notations of the preceding step, we have

S1 (T +K) = S1T + S1K = id + (R1 + S1K) ,

where R1 + S1K is compact. Also, a similar argument yields that (T +K)S2 − id is also
compact. Hence, T + K is Fredholm. Moreover, for each λ ∈ [0, 1] the map T + λK is
also Fredholm and therefore ind (T + λK) is a locally constant function of λ. Hence, in fact
ind (T + λK) is constant in λ so that ind (T +K) = indT . □

Corollary 3.5. Let L ∈ Diff l (E;F ) be an elliptic differential operator. If M is closed, then

ind
(
L : Hk+l (E) −→ Hk (F )

)
depends only on the principal symbol of L.

Proof. If σl (L) is the principal symbol of L, pick any L0 ∈ Diff l (E;F ) such that σl (L0) =
σl (L). Then K := L−L0 is of order at most l−1. Hence, its closure (still denoted by the same
letter) K : Hk+l (E) −→ Hk (F ) is compact as a composition of a bounded map Hk+l (E) →
Hk+1 (F ) and a compact one Hk+1 (F ) → Hk (F ). Hence, indL = ind (L0 +K) = indL0.

□
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Exercise 3.6. Find a mistake in the following "proof" of the claim that any two elliptic operators
of the same order have equal indices. Thus, assume that L0 and L1 are two such operators. Then
ind ((1− t)L0 + tL1) does not depend on t implying that indL0 = indL1.

Exercise 3.7. Show that the index of a formally self-adjoint differential operator vanishes.

The above corollary raises naturally the question how one can actually compute the index of
a differential operator just in terms of its principal symbol. This task has been accomplished by
Atiyah and Singer in 1960s. However, even to formulate an answer we need to make a detour.

3.2 Characteristic Classes

3.2.1 The curvature of a connection
Recall that given a vector bundle E →M equipped with a connection ∇ we have the sequence

Ω0 (E)
d∇−−→ Ω1 (E)

d∇−−→ Ω2 (E)
d∇−−→ . . .

d∇−−→ Ωn (E) −→ 0,

see (2.25) for details. As it was already pointed out above, this sequence is not a complex in
general, that is d2∇ := d∇ ◦ d∇ does not necessarily vanish. Nevertheless, d2∇ has the following
interesting property.

Proposition 3.8. d2∇ : Ωk (E) −→ Ωk+2 (E) is C∞ (M)-linear.

Proof. Pick any s ∈ Γ (E) and f ∈ C∞ (M). We have

d∇d∇ (f s) = d∇ (∇ (f s)) = d∇ (df ⊗ s+ f∇s)
= d (df)⊗ s− df ∧∇s+ df ∧∇s+ fd∇ (∇s)
= fd∇ (∇s) .

This proves this proposition for k = 0. The rest of the proof is left as an exercise to the
reader. □

Remark 3.9. In our setting it is convenient to work over the field of complex numbers, although
we could have considered R as a basic field equally well. Hence, we assume that ∇ is compatible
with the complex structure of E, that is ∇ (is) = i∇s. In particular, in the above proposition
C∞ (M) means C∞ (M ;C). I shall not always be very picky concerning such details below.

Lemma 3.10. Let A : Γ (E) → Ωk (M ;F ) be a C-linear map, which is also C∞ (M ;C)-linear,
that is

A (f · s) = f · A (s) ∀f ∈ C∞ (M ;C) and s ∈ Γ (E) .

Then there exists a ∈ Ωk (Hom (E;F )) such that A (s) = a · s.

The proof of this proposition is also left as an exercise.

Corollary 3.11. For any connection ∇ there exists a 2-form F∇ ∈ Ω2 (End (E)) such that for
any ω ∈ Ωk (E) we have d∇ (d∇ω) = F∇ ∧ ω. □

Definition 3.12. The 2-form F∇ as in the above corollary is called the curvature form of ∇.
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To establish a geometric meaning of the curvature form, pick local coordinates (x1, . . . xn)
on M . We could call

∇js = ı ∂
∂xj

(∇s)

the jth partial covariant derivative of s ∈ Γ (E). In particular, ∇s =∑n
j=1 dxj ⊗∇js. Hence,

d∇ (d∇s) = −
n∑
j=1

dxj ∧∇ (∇js) = −
n∑
j=1

dxj ∧
(

n∑
i=1

dxi ⊗∇i (∇js)

)
=
∑
i<j

dxi ∧ dxj (∇i (∇js)−∇j (∇is)) .

In other words, by writing F∇ =
∑

i<j Fij dxi ∧ dxj where Fij ∈ End (E), we have Fijs =
∇i (∇js) − ∇j (∇is). Thus, the curvature measures the extend to which partial covariant
derivatives fail to commute.

3.2.2 Local representation of the curvature form
Recall that locally a connection can be identified with a 1-form. This means the following:
Given an open subset U such that E admits a trivialization ψ over U , any section s over U can
be identified with a map σ : U → Ca, where a = rkE. Then

∇ = d+ A ⇐⇒ ∇s ≡ dσ + Aσ,

where A ∈ Ω1 (U ;Ma (C)). Hence,

d∇ (∇s) ≡ d (dσ + A · σ) + A ∧ (dσ + A · σ)
= 0 + dA · σ − A ∧ dσ + A ∧ dσ + A ∧ A · σ
= (dA+ A ∧ A) · σ.

Hence, locally F∇ can be identified with the 2-form dA+A∧A, which takes values in Ma (C).
Somewhat informally, one simply writes

F∇ = dA+ A ∧ A (3.13)

keeping in mind that the right hand side depends on the trivialization chosen.

Exercise 3.14. For any A ∈ Ω1 (M ;Ma (C)) ∼= Ma (Ω
1 (M)) define [A,A] ∈ Ω2 (M ;Ma (C))

by
[A,A] (v, w) = A (v)A (w)− A (w)A (v) ∈Ma (C) .

Show that A ∧ A = 1
2
[A,A], where the factor 1

2
stems from the following definition of the

wedge-product for 1-forms:

ω ∧ η =
1

2
(ω ⊗ η − η ⊗ ω) ⇐⇒ ω ∧ η (v, w) = 1

2
(ω (v) η (ω)− ω (w) η (v)) .

In particular,

F∇ = dA+
1

2
[A,A].

Warning: Sometimes the wedge-product is defined without the factor 1
2

in the literature. This
may lead to confusions.
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Exercise 3.15. Show that for anny A,B ∈ Ω1 (M ;Ma (C)) we have

[A,B] = +[B,A]. (3.16)

Exercise 3.17. If e′ is another trivialization of E such that e = e′ · g just like in Section 2.1,
then

F ′
∇ = g−1F∇g, (3.18)

where F ′
∇ denotes the local representation of the curvature of ∇ with respect to e′.

Proposition 3.19 (Bianchi identity). If A ∈ Ω1 (U ;Ma (C)) is a local representation of ∇ as
above, then dF∇ + [A,F∇] = 0.

Sketch of proof. We have

d

(
dA+

1

2
[A,A]

)
+

[
A, dA+

1

2
[A,A]

]
=

1

2
[dA,A]− 1

2
[A, dA] + [A, dA] +

1

2
[A, [A,A]]

= −1

2
[A, dA]− 1

2
[A, dA] + [A, dA] +

1

2
[A, [A,A]]

=
1

2
[A, [A,A]] ,

where the second equality follows from [A,B] = − [B,A] if A ∈ Ω1 (U ;Ma (C)) and B ∈
Ω2 (U ;Ma (C)), cf. (3.16). The proof is finished by the following observation, whose proof is
left to the reader: The Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0,

which is valid for any X, Y, Z ∈Ma (C), implies that [A, [A,A]] = 0. □

Remark 3.20. More invariant interpretation of the Bianchi identity is as follows. By Lemma 2.28,
∇ induces a connection on E∗. Hence, using Lemma 2.28 again we obtain a connection, which
is still denoted by the same letter, onE∗⊗E ∼= End (E). Then we also obtain the corresponding
map d∇ : Ωk (M ; End (E)) −→ Ωk+1 (M ; End (E)) and the above proposition may be restated
simply as d∇F∇ = 0.

Proposition 3.21. If ∇ is Hermitian, then F∇ takes values in skew-Hermitian endomorphisms.
In other words, for any v, w ∈ TM we have

F∇ (v, w)∗ = −F∇ (v, w) .

Proof. Let e = (e1, . . . , ea) be a local trivialization of E such that e is a pointwise orthonormal
basis of the corresponding fiber. If A is the local representation of a Hermitian connection ∇
with respect to such a trivialization, then for any σ1, σ2 : U −→ Ca we have

d⟨σ1, σ2⟩ = ⟨(d+ A)σ1, σ2⟩+ ⟨σ1, (d+ A)σ2⟩,

since ∇ is Hermitian. Here ⟨·, ·⟩ denotes the standard Hermitian scalar product on Ca. The right
hand side of the above equality equals

d⟨σ1, σ2⟩+ ⟨Aσ1, σ2⟩+ ⟨σ1, Aσ2⟩,

so that we must have ⟨Aσ1, σ2⟩ = −⟨σ1, Aσ2⟩. Hence, A ∈ Ω1 (U ; u (a)) and therefore F∇ =
dA+ 1

2
[A,A] ∈ Ω2 (U ; u (a)), since the commutator of any pair of matrices from u (a) belongs

to u (a). □
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3.2.3 Chern classes
Let p : u (a) → C be a homogeneous polynomial of degree d. This means the following:
Assume ξ1, . . . , ξn is a basis of u (a) (in particular, n = a(a−1)

2
). If ξ =

∑n
j=1 xjξj , then

p (ξ) = p
(∑n

j=1 xjξj

)
is a polynomial of degree d in (x1, . . . , xn). Assume also that p is

invariant, that is

p
(
UξU−1

)
= p (ξ) for all ξ ∈ u (a) and U ∈ U(a) .

Example 3.22.

1) pd (ξ) := i tr ξd is an invariant homogeneous polynomial of degree d.
2) p (ξ) := det ξ is an invariant homogeneous polynomial of degree a.
3) More generally, define polynomials c1, . . . , ca on u (a) by the equality

det

(
λ · 1+

i

2π
ξ

)
= λa + c1 (ξ)λ

a−1 + . . .+ ca−1 (ξ)λ+ ca (ξ) ,

where λ ∈ C is a parameter and 1 is the identity matrix. For example, c1 (ξ) = i
2π

tr ξ
and ca (ξ) = ia

(2π)a
det ξ. The reader should check that cj is an invariant homogeneous

polynomial of degree j.

Moreover, notice that the equality

det

(
λ · 1+

i

2π
ξ

)
= det

(
λ̄ · 1+

i

2π
ξ

)
implies that cj (ξ) = cj (ξ), that is each cj takes values in R rather than C.

Definition 3.23. Let E be a Hermitian vector bundle of rank a. Pick an invariant homogeneous
polynomial p as above and a Hermitian connection ∇. In a local trivialization e = (e1, . . . , ea)
such that e is pointwise an orthonormal basis, think of F∇ as a 2-form F loc

∇ = dA + 1
2
[A,A]

with values in u (a). Finally, set p (F∇) = p
(
F loc
∇
)
∈ Ω2d (M ;C).

Lemma 3.24. The following holds:

(i) p (F∇) is well-defined.
(ii) p (F∇) is closed.

(iii) The de Rham cohomology class of p (F∇) depends neither on the choice of ∇ nor on the
Hermitian scalar product on E.

Proof. Claim (i) follows easily from (3.18) and the invariance of p. The rest of the proof consists
of the following steps.

Step 1. We prove (ii).

Let ξ, ξ1, . . . , ξd be arbitrary elements of u (a). Slightly abusing notations, denote by p : u (a)×
. . .×u (a) → C the symmetrization of p, that is a multilinear symmetric map, whose restriction
to the diagonal {(ξ, . . . , ξ)} yields the original polynomial p.

Differentiating the equality

p
(
etξξ1e

−tξ, . . . , etξξde
−tξ) = p (ξ1, . . . , ξd)
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with respect to t and setting t = 0, we obtain that the equality

p ([ξ, ξ1] , ξ2, . . . , ξd) + p (ξ1, [ξ, ξ2] , . . . , ξd) + . . .+ p (ξ1, ξ2, . . . , [ξ, ξd]) = 0 (3.25)

holds for any ξ, ξ1, . . . ξd ∈ u (a). This implies the following identity

p
([
F loc
∇ , A

]
, A, . . . , A

)
+ . . .+ p

(
A,A, . . . ,

[
F loc
∇ , A

])
= 0.

Hence,

dp
(
F loc
∇
)
= p

(
dF loc

∇ , F loc
∇ , . . . , F loc

∇
)
+ p

(
F loc
∇ , dF loc

∇ , . . . , F loc
∇
)
+ . . .+ p

(
F loc
∇ , . . . , dF loc

∇
)

= p
([
F loc
A , A

]
, F∇, . . . , F∇

)
+ p

(
F loc
∇ ,
[
F loc
∇ , A

]
, . . . , F loc

∇
)
+ . . .

+ p
(
F loc
∇ , F loc

∇ , . . . ,
[
F loc
∇ , A

])
= 0,

where the first equality follows from the Bianchi identity and the second one from (3.25).

Step 2. Let I = [0, 1] be the interval and ı0, ı1 : M → I be the natural inclusions corresponding
to the endpoints of the interval. There exists a linear map Q : Ωk (M × I) → Ωk−1 (M) such
that for any ω ∈ Ωk (M × I) we have ı∗1ω − ı∗0ω = dQω −Qdω. ref

Step 3. The cohomology class of p (F∇) does not depend on the choice of ∇.

Pick any two Hermitian connections ∇0 and ∇1 and think of ∇t := (1− t)∇0 + t∇1 as a
connection on pr∗1E → M × I , where pr1 : M × I → M is the natural projection. Then we
have

p (F∇0)− p (F∇1) = ı∗1p (F∇t)− ı∗0p (F∇t)

= dQp (F∇t)−Qdp (F∇t)

= dQp (F∇t) .

Here the second equality follows from Step 2 and the third one from Step 1.

Step 4. The cohomology class of p (F∇) does not depend on the Hermitian scalar product of E.

The proof of this step is similar to the proof of the preceding one and follows in essense
from the fact that the space of all Hermitian scalar products is convex. I leave the details to the
reader. □

Let cj be as in Example 3.22. Then by Lemma 3.24, cj (F∇) is a closed real-valued form
and the de Rham cohomology class of cj (F∇) depends on E only.

Definition 3.26. The class cj (E) := [cj (F∇)] ∈ H2j
dR (M ;R) is called the jth Chern class of E

and
c (E) := 1 + c1 (E) + c2 (E) + . . .+ ca (E) ∈ H• (M ;R)

is called the total Chern class of E.

Theorem 3.27. The Chern classes satisfy the following properties:

(i) c0 (E) = 1 for any complex vector bundle E;
(ii) The Chern classes depend on the isomorphism class of E only;

(iii) cj (f ∗E) = f ∗cj (E) for all complex vector bundles E → M and all (smooth) maps
f : N →M ;

(iv) c (E1 ⊕ E2) = c (E1) ∪ c (E2);
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(v) If E ∼= E1 ⊕ Cb, then cj (E) = 0 for j > rkE − b. In particular, if E is trivial, then
cj (E) = 0 for all j > 0.

Proof. Property (i) is just the definition of c0. The rest of the proof consists of the following
steps.

Step 1. We prove (ii).

Suppose ψ : E0 → E1 is an isomorphism. Given a Hermitian scalar product ⟨·, ·⟩1 and a
Hermitian connection ∇1 onE1 we can define a Hermitian scalar product ⟨·, ·⟩0 and a Hermitian
connection ∇0 on E0 as follows:

⟨t1, t2⟩0 = ⟨ψ t1, ψ t2⟩1, t1, t2 ∈ E0.

∇0s0 := ψ−1 (∇1 (ψs0)) , s0 ∈ Γ (E0) .

If e1 = (e11, . . . , e
1
a) is a local trivialization of E1 such that e1 is pointwise orthonormal, then

e0 := (ψ−1e11, . . . , ψ
−1e1a) is a local trivialization of E0 with the same property. Hence, if

A ∈ Ω1 (U ; u (a)) is a local representation of ∇1, then the local representation of ∇0 with
respect to e0 is also A, since by (2.14) we have

∇1e
1 = e1 · A =⇒ ∇0e

0 = ψ−1
(
∇1e

1
)
= ψ−1

(
e1 · A

)
= e0 · A.

This yields that the curvature forms of ∇0 and ∇1 with respect to the above trivializations
coincide, so that we trivially have c (E0) = c (E1).

Step 2. We prove (iii).

Given a Hermitian scalar product ⟨·, ·⟩ on E and a local trivialization e = (e1, . . . , ea) of
E over U such that e is pointwise an orthonormal basis, we can construct a Hermitian scalar
product and a local trivialization of f ∗E over f−1 (U) by

⟨t1, t2⟩n := ⟨t1, t2⟩f(n), t1, t2 ∈ En, n ∈ N

f ∗e
∣∣
n
:= e

∣∣
f(n)

.

Furthermore, if a Hermitian connection ∇ on E is represented by some A ∈ Ω1 (U ; u (a)), then
we can define a new connection f ∗∇ on f ∗E by declaring

(f ∗∇) (f ∗e) = (f ∗e) · f ∗A,

that is f ∗A is a local representation of f ∗∇ with respect to f ∗e. Then

Ff∗∇ = d (f ∗A) +
1

2
[f ∗A, f ∗A] = f ∗

(
dA+

1

2
[A,A]

)
= f ∗F∇,

which implies (iii).

Step 3. We prove (iv).

Let ∇j be a connection on Ej, j = 1, 2. Define a connection ∇ on E1 ⊕ E2 by

∇ (t1, t2) = (∇1t1,∇2t2) .

If ej is a local trivialization of Ej , then e = (e1, e2) is a local trivialization of E1 ⊕ E2. With
respect to these trivializations we have

F loc
∇ =

 F loc
∇1

0

0 F loc
∇2

 ,
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where the right hand side is a block-matrix with non-trivial blocks in the upper left and lower
right corners only.

Since for any block-matrix we have

det

(
A 0

0 B

)
= detA · detB,

we obtain

c (F∇) = det

 1+ i
2π
F∇1 0

0 1+ i
2π
F∇2

 = c (F∇1) ∧ c (F∇2)

This implies (iv).

Step 4. We prove (v).

If E ∼= Ca, then we can use the trivial connection ∇ = d to deduce that c (E) = 1. If
E ∼= E1 ⊕ Cb, by the preceding step we have

c (E) = c (E1) ∪ 1 = c (E1) ,

which yields (v). □

3.2.4 Other characteristic classes
Assume E can be written as the Whitney sum of line bundles: E = L1⊕ . . .⊕La. Then for the
total Chern class of E we have

c (E) = c (L1) · . . . · c (La) = (1 + c1 (L1)) · . . . · (1 + c1 (La)) ,

where · denotes the product in H• (M) i.e., the cup-product. Denoting xj := c1 (Lj), we obtain

c (E) =
a∏
j=1

(1 + xj) = 1 + σ1 + σ2 + . . .+ σa,

where σk = σk (x1, . . . , xa) is the kth elementary symmetric function of x1, . . . , xk. In other
words,

c1 (E) = σ1 (x1, . . . , xa) = x1 + . . .+ xa,

c2 (E) = σ2 (x1, . . . , xa) = x1x2 + x1x3 + . . .+ xa−1xa,

. . .

ca (E) = σa (x1, . . . , xa) = x1x2 . . . xa.

The following algebraic fact will be useful below.

Fact: For any symmetric polynomial p = p (x1, . . . , xa) there exists a unique polynomial q in
a variables such that

p (x1, . . . , xa) = q (σ1 (x) , . . . , σa (x)) .

This fact implies the following: Given any symmetric polynomial p (x1, . . . , xa) we can
construct a characteristic class p (E) by setting

p (E) := q (c1, c2, . . . , ca) ∈ H• (M ;R) .
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For example, choose

ch (x1, . . . , xa) =
a∑
j=1

exj

=

(
1 + x1 +

1

2
x21 + . . .

)
+ . . .+

(
1 + xa +

1

2
x2a + . . .

)
= a+ (x1 + . . .+ xa) +

1

2

(
x21 + . . .+ x2a

)
+ . . .

= a+ σ1 +
1

2

(
σ2
1 − 2σ2

)
+ . . .

Notice that here and below, we think of xj as nilpotent elements of the ring H• (M ;R) so that
all sums above are finite.

Thus we have

ch (E) = rkE + c1 (E) +
1

2

(
c21 (E)− 2c2 (E)

)
+ . . .

Remark 3.28. It is not true in general that any vector bundle can be written as the Whitney sum
of line bundles. Nevertheless, this is true in some sense, which I shall not try to describe here.
In particular, when manipulating with characteristic classes it is admissable to imagine that
bundles decompose as Whitney sums of line bundles. This is called "the splitting principle",
which is explained somewhat more concretely in the proof below.

Proposition 3.29. The Chern character satisfies the following:

(i) ch (E ⊕ F ) = ch (E)⊕ ch (F );
(ii) ch (E ⊗ F ) = ch (E) · ch (F ).

Proof. Assume that both E and F split as Whitney sums of line bundles:

E = L1 ⊕ . . .⊕ La and F = L1 ⊕ . . .⊕ Lb.

Denote xj := c1 (Lj) and yk := c1 (Lk). The bundle E ⊕ F also splits as the Whitney sum of
line bundles so that we have

ch (E ⊕ F ) =
a∑
j=1

exj +
b∑

k=1

eyj = ch (E) + ch (F )

for all bundles, which split as the sum of line bundles. This imples that we have the algebraic
identity

ch (x1, . . . xa, y1, . . . , yb) = ch (x1, . . . , xa) + ch (y1, . . . , yb) (3.30)

where we think of ch simply as a polynomial in the corresponding number of variables. Notice
that (3.30) can be easily established purely algebraically without any reference to vector bundles.

Furthermore, if qa+b (σ1, . . . , σa+b) is the expression of ch (x1, . . . , xa; y1, . . . , yb) in terms
of elementary symmeric polynomials in a+ b variables, then we must have

qa+b (σ1 (x, y) , . . . , σa+b (x, y)) = qa (σ1 (x) , . . . , σa (x)) + qb (σ1 (y) , . . . , σb (y)) .

This implies that (i) holds not only for those vector bundles, which split, but rather for all
bundles.

The proof of (ii) goes along similar lines and the details are left to the reader. □
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Definition 3.31. The Todd class td (E) ∈ H• (M ;R) is the characteristic class corresponding
to the polynomial

td (x1, . . . , xa) :=
a∏
j=1

xj
1− e−xj

= 1 +
1

2
σ1 +

1

12

(
σ2 + σ2

1

)
+ . . .

3.3 A prototype of the index theorem

Denote

Ωev (M) := Ω0 (M)⊕ Ω2 (M)⊕ . . . and Ωodd (M) := Ω1 (M)⊕ Ω3 (M)⊕ . . .

Exercise 3.32. Show that

D := d+ d∗ : Ωev (M) −→ Ωodd (M) (3.33)

is elliptic.

If M is compact, which is assumed throughout in this section, by Proposition 1.29 we have

KerD = H0 (M)⊕H2 (M)⊕ . . . ∼= Hev
dR (M) .

Moreover, Theorem 2.80 implies

CokerD = H1 (M)⊕H3 (M)⊕ . . . ∼= Hodd
dR (M) .

Therefore, for the index of D we obtain

indD = dimHev
dR (M)− dimHodd

dR (M)

= b0 (M) + b2 (M) + . . .− b1 (M)− b3 (M)− . . .

= χ (M) ,

where χ (M) is the Euler characteristic of M . Thus, we summarize.

Theorem 3.34. The index of (3.33) equals χ (M). □

This is an interesting theorem, since this is an example of a relation between solutions of
PDEs and a purely topological quantity. For example, if χ (M) > 0, we deduce that M must
support at least one non-trivial harmonic form. Of course, the reader surely can give a more
precise relation between topological invariants of M and the number of linearly independent
harmonic forms on M , however notice the following:

• The Euler number is easier to compute than the individual Betti numbers.

• In more general situations the index is relatively easily computable, whereas more detailed
information about solutions of PDEs is typically hard to obtain.
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3.4 On the de Rham cohomolgy with compact supports
For non-compact manifolds the de Rham cohomology groups are typically poorly behaved.
There are many ways to adapt the definition of the de Rham cohomology groups to this setting.
One possibility is to replace each Ωk (M ;R) by

Ωk
0 (M) :=

{
ω ∈ Ωk (M) | suppω is compact

}
.

That is instead of the de Rham complex (1.1) we consider

0 → Ω0
0 (M)

d−→ Ω1
0 (M)

d−→ . . .
d−→ Ωn

0 (M) → 0.

Akin to (1.3), we define Hk
0 (M) to be the kth cohomolgy group of the above complex.

Of course, ifM is compact, we trivially haveHk (M) = Hk
0 (M), however for non-compact

manifolds Hk (M) ̸= Hk
0 (M) in general. For example, one can show that Hn

0 (Rn) ∼= R, see
[BT82, Cor. 4.7.1].

The only property which will be of concern for us is the following. If Mn is oriented, the
integration ∫

: Ωn
0 (M) −→ R

is well-defined and yields an isomorphism Hn
0 (M) ∼= R [BT82, Cor. 5.8].

3.5 Basics of K-theory
Let N be a semiring, that is N is endowed with addition and multiplication just like a ring,
however additive inverse of an element n ∈ N does not need to exist.

Example 3.35. The set of natural numbers N is a semiring.

Any semiring N can be canonically ’enlarged’ to a ring as follows. Denote

K (N) = {n−m | n,m ∈ N} / ∼,

where the difference n−m is understood formally, and

n−m = n′ −m′ ⇐⇒ ∃ k ∈ N such that n+m′ + k = n′ +m+ k.

Then K (N) is a ring, since the additive inverse of n−m exists and equals m− n.

Example 3.36. K (N) ∼= Z.

Let M be a compact manifold. Then the set of isomorphism classes of (complex) vector
bundles over M is a semiring with respect to ⊕ and ⊗ operations. Hence, we can construct a
ring K (M), which consists of (classes of) formal diferences E − F . By setting

ch (E − F ) := ch (E)− ch (F )

we obtain by Proposition 3.29 that ch: K (M) −→ H• (M) is a well-defined homomorphism
of rings.

If M is non-compact, one has to modify the above construction slightly so that the resulting
ring behaves nicely. Thus, for a non-compact M roughly speaking the ring K (M) consists of
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classes of formal differences E − F such that E and F are isomorphic on the complement of a
compact subset A ⊂M . By the proof of Theorem 3.27, there exist connections ∇E and ∇F on
E and F respectively such that F∇E = F∇F on M\A. Hence, cj (E) and cj (F ) are represented
by 2j-forms, which agree on M\A so that ch (E − F ) ∈ H•

0 (M).
The upshot of this section is that it is legitimate to consider formal differences of vector

bundles and if E and F are isomorphic away from a compact subset of M , then ch (E · F )
takes values in the compactly supported cohomology ring of M .

Let me note in passing that the ring K (M) is an important invariant of the underlying space
M . This invariant has been extensively studied, however this goes beyond the scope of these
lecture notes.

3.6 The symbol of an elliptic operator revisited
Let us consider first the following construction of vector bundles on the spheres. Denote

Sn± := {(x0, . . . xn) ∈ Sn| ± xn ≥ 0}
so that Sn+ ∩ Sn− = Sn−1 is the equator. Given a (smooth) map g : Sn−1 → GLa (C), we can
construct a complex vector bundle E of rank a on Sn as follows. Declare E to be(

Sn+ × Ca
)
⊔
(
Sn− × Ca

)
\ ∼, (3.37)

where (x, v) ∼ (x, g(x)v) if and only if x ∈ Sn−1. This is usually called the clutching
construction, which yields all complex vector bundles on Sn up to an isomorphism.

Furthermore, pick σ ∈ Smbl (E;F ) and a point m ∈ M . We can do the following
parameterized version of the clutching construction. Denote first by T ∗

mM
+ the one-point

compactification of T ∗
mM

∼= Rn so that T ∗
mM

+ ∼= Sn. We can think of T ∗
mM

+ as the union of
the "hemispheres"

S−
m =

{
ξ ∈ T ∗

mM | |ξ| ≤ 1
}

and S+
m =

{
ξ ∈ T ∗

mM | |ξ| ≥ 1
}
∪ {∞}

so that S+
m∩S−

m = {|ξ| = 1} ⊂ T ∗
mM . Therefore, we can construct the bundle Σm by attaching

S−
m × Em to S+

m × Fm by means of σ. To be more precise,

Σm :=
((
S−
m × Em

)
⊔
(
S+
m × Fm

))
/ ∼, where (ξ, v) ∼

(
ξ, σ(m, ξ)v

)
provided |ξ| = 1. As m varies over M , we obtain a complex vector bundle Σ over SnM ,
where SnM is a fibered space arising as pointwise one-point compactifications of the fibers of
T ∗M . Sometimes this vector bundle Σ is referred to as the symbol of L ∈ Diff l (E;F ) provided
σ = σl (L).

In any case, Σ− π∗F can be viewed as an element of K (SnM). It will be more convenient
for us to view Σ − π∗F as an element of K (T ∗M). This makes sense, since Σ and π∗F are
isomorphic on the complement of the set {|ξ| ≤ 1}, which is compact. Therefore, the class
ch (Σ− F ) ∈ H•

0 (T
∗M) is well defined.

With these preparations at hand, we can state the index theorem.

Theorem 3.38 (Atiyah-Singer). Let M be a smooth closed oriented manifold of dimension n.
Let L ∈ Diff l (E;F ) be an elliptic differential operator. Let Σ be a vector bundle associated
with σl (L) as above. Then

indL = (−1)n
∫
T ∗M

ch (Σ− π∗F ) ∪ π∗td (TM ⊗ C) . (3.39)
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Remark 3.40.

1) For any class ω =
∑
wj ∈ H•

0 (M ;R), where wj ∈ Hj
0 (M ;R), by definition we have∫

M
ω =

∫
M
ωn.

2) A priori it is by no means clear that the right hand side of (3.39) is an integer (though one
can show that this is a rational number by purely topoligical means).

3) The right hand side of (3.39) can be expressed as an integral over M rather than T ∗M .
Most frequently one finds the Atiyah-Singer theorem in the literature in the form with the
integration over M .

3.7 An application: The Riemann-Roch formula
Let E → Σ be a complex vector bundle over a Riemann surface Σ.

Definition 3.41. A holomorphic structure on E is an open covering U = {Uα} of Σ with the
following properties:

• E admits a trivialization eα over each Uα;

• On each Uαβ := Uα∩Uβ the corresponding transition maps gαβ : Uαβ → GLa (C) defined
by eβ = eα · gαβ are holomorphic.

If E is a holomorphic vector bundle, that is a complex vector bundle equipped with a
holomorphic structure, we can define the Dolbeault operator ∂̄ : Ω0 (E) → Ω0,1 (E) by the
following rule: If s = eα · σα over Uα, then ∂̄s := eα · ∂̄σα. In other words, we declare each
eαj to be a local holomorphic section of E over Uα. The reader will have no difficulties to check
that ∂̄ is well-defined. Moreover, ∂̄ is elliptic just like the Dolbeault operator considered in
Section 2.5.1.

ClearlyH0 (E) := Ker ∂̄ is the space of global holomorphic sections. Denote alsoH1 (E) :=
Coker ∂̄. If Σ is closed, the Atiyah-Singer index theorem yields an expression for

ind ∂̄ = dimH0 (E)− dimH1 (E)

in terms of characteristic classes of E. Since Σ is one-dimensional, the only relevant class is
c1 (E). A computation shows that

dimH0 (E)− dimH1 (E) = a (1− g) +

∫
Σ

c1 (E) ,

where a = rkE and g is the genus of Σ. This is the celebrated Riemann-Roch formula. In
particular, if ∫

Σ

c1 (E) > (g − 1) a,

then E admits a non-trivial holomorphic section.
For example, for E = T ∗Σ ∼= (T ∗Σ)1,0 we have∫

Σ

c1 (T
∗Σ) = 2g − 2

so that the Riemann-Roch formula yields

dimH0 (T ∗Σ)− dimH1 (T ∗Σ) = 1− g + 2g − 2 = g − 1.

Hence, a compact Riemann surface admits a non-trivial holomorphic (1, 0)− form provided
g (Σ) > 1.
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